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Why This Talk?

•Domain-driven Design provides lots of tools.

•Which are really useful?

•How can you combine them?



Event Storming



Why Event Storming?

Domain Experts

Understand the domain

Software Engineers

Structure knowledge
to become software

How does domain
knowledge become

software?



Why Event Storming?

Domain Experts Software Engineers

Model



What is Event Storming?

•Event in the past

•At least noun + verb

•Verb in past tense

•Write event on orange sticky

Order 
accepted



Phase: Chaotic Exploration

•Create as many events as possible



Phase: Enforce the timeline



Phase: Enforce the timeline



Phase: Identify Swim Lanes

•Parallel activities
Swimlane 
Invoicing

Swimlane 
Delivery



Phase: Identify Pivotal Events

•Afterwards the world is different

Order accepted
Parcel left 
warehouse

Swimlane 
Invoicing

Swimlane 
Delivery



Event Storming: Benefits

•Low-tech: easy to understand for domain experts

•People can work in parallel.

•Social structures become obvious.



Event Storming: Result

•Common understanding of the domain

•A model of the domain

…that must be tweaked before it can be implemented



Bounded Context



Why Bounded Context?

•Coarse-grained split of the domain

•A scope that might be assigned to a team



Bounded Context

Bounds

Model i.e. 
Code

Ubiquitous 
Language



Ubiquituous Language

Database

Code Software Engineers
Domain Experts



Invoicing
Process

Bounded Context Example

Customer who pays the bill

Delivery

Customer who the products 
are sent to 



Parcel left 
warehouse

Identify Candidates for Bounded Contexts

•Areas between swim lanes and pivotal events are 
good candidates for Bounded Contexts

Swimlane 
Delivery

Order accepted Swimlane 
Invoicing



Identify Candidates for Bounded Contexts

•Areas between swim lanes and pivotal events are 
good candidates for Bounded Contexts

Invoicing

Delivery ProcessOrder Processing



Identify Candidates for Bounded Contexts

•Reimbursements handled by invoicing?

•Return handled by delivery process?

Invoicing

Delivery ProcessOrder Processing



Bounded Context: Benefits

•Structures domain logic

•Request probably local to one bounded context

•Changes probably local to one bounded context

• i.e. a great architecture!



Core Domain



Core Domain

•Core domain = motivation for the project

•Reduce the complexity of the model

•Focus on maintainability of this part of the system



What is the Core Domain?

•Differentiation: quick and reliable delivery 

•Core domain = delivery process

Invoicing

Delivery ProcessOrder Processing



Core Domain: Result

•Clear focus

•Better understanding of the domain



Not Strategic Design but
Team Topologies



Why Team Topologies?

•Somehow teams need to collaborate

•Not too complex

• Intuitive (?)

•Covers more “fracture planes” then just Bounded 
Contexts e.g. location

•Covers more team types than development teams



Team Topologies

Stream-aligned team

Platform team

Enabling team

Complicated 
Subsystem 

team

XaaS

Collaboration

Facilitating

XaaS



Team Topologies

Order Processing

Kubernetes / CI Team

Delivery 
Optimization

Invoicing

Delivery

XaaS

Architecture

Collaboration

Facilitating

XaaS



Team Topologies: Result

•Team setup defined

•Collaborations defined



https://software-architektur.tv/2024/04/18/folge213.html

https://software-architektur.tv/2024/04/18/folge213.html


Finally: Coding! 



Finally: Coding! 
(sort of )



Tactical Design



Why Tactical Design?

•Object-oriented concepts

•Make a lot of sense to build good object-oriented 
systems!



Tactical Design

Entity
Value
Object

Domain
Event

Identity: 
a person

Value: 
2€, 2m

Something 
has 

happened.

Matters to 
domain 
experts



Tactical Design

Entity
Value
Object

Aggregate FactoryRepository

Domain
Event

Consists of Entities 
and Value Objects

Aggregate Root 
ensures consistency

Illusion of a 
collection of 
aggregates

Creates complex 
value objects and 

aggregates



Tactical Design

Entity
Value
Object

Aggregate FactoryRepository

Service

Domain
Event

Logic doesn‘t fit in 
Entities / 

Aggregates



Example: Delivery Bounded Context

Parcel
<<Entity>>

Adress
<<ValueObject>>

Customer 
<<Aggregate>>

Delivery
Factory

Delivery
Repository

ScheduleDelivery
<<Service>>

DeliveryScheduled
<<Event>>

Delivery
<<Aggregate>>



https://software-architektur.tv/2024/05/03/folge214.html



Alternative: Functional Programming

•Side-effect free functional core

• i.e. no entities, aggregates etc

•Side-effects separated



Alternatives for Less Complex Systems

•Transaction script: handles a single request from the 
presentation incl. database code.

•Table model: Single instance handles business logic for 
all rows in a database table or view.



https://software-architektur.tv/2024/05/03/folge214.html

https://software-architektur.tv/2024/05/03/folge214.html


Framework?

•POJO (Plain Old Java Objects) might be enough

•https://xmolecules.org/ supports DDD concepts

•https://odrotbohm.de/2020/03/Implementing-DDD-
Building-Blocks-in-Java/ describes the idea

https://xmolecules.org/
https://odrotbohm.de/2020/03/Implementing-DDD-Building-Blocks-in-Java/
https://odrotbohm.de/2020/03/Implementing-DDD-Building-Blocks-in-Java/


https://software-architektur.tv/2024/05/31/episode219.html

https://software-architektur.tv/2024/05/31/episode219.html


Framework?

•Might use architecture management tools to enforce 
dependencies

•https://software-architektur.tv/
tags.html#Architecture%20Management

https://software-architektur.tv/tags.html#Architecture%20Management
https://software-architektur.tv/tags.html#Architecture%20Management


Design-Level Event Storming

Actor

Command

System

Domain 
Event

External 
System

Policy

Command

Read 
Model

UI



Design-Level Event Storming

•Helps to understand the domain on the necessary 
level of detail

•But no easy mapping to tactical domain-driven design



Design-Level Event Storming

Actor

Command

System

Domain 
Event

External 
System

Policy

Command

Read 
Model

UI

Aggregate

Aggregate, 
Service

Aggregate, 
Service

Aggregate, 
Service

Domain 
Event



Event Sourcing

•Store events that lead to a specific state

•Might also store state (optional)

•System of record: State or events



Interface

Calls, messages, …

Event Store

Order Cancelled 42

Order Accepted 23

Order Accepted 42
Order 42

Order 23

Order Delivered 23

Order 23 

State

Order 42  



StateEvents
Calculate

State on Demand

State+
Events

Event
Sourcing



Event Sourcing Example

Event Store

Delivery loaded 42

Delivery picked up 42

Delivery scheduled 42

Delivery delivered 42

Delivery acknowledged 42

Can you model 
delivery without an 
event store?

Why calculate the 
state of a delivery 
based on the 
events and not 
store the state?



CQRS

•Command Query Responsibility Separation

•E.g. separate read and write



Command
Queue

Command

Command

Command

Command
Handler

Query
Handler

Command
Store

Database

Read Invoice

Payment Read 
Replica?

Create Invoice!

CQRS



Command
Queue

Command

Command

Command

Command
Handler

Query
Handler

Command
Store

Snapshot

Read Invoice

Create Invoice!

Payment

Event Sourcing

Might make 
sense for e.g. 

statistics

CQRS



Command
Queue

Command

Command

Command

Command
Handler

Query
Handler

Command
Store

Snapshot

Read Invoice

Create Invoice!

Payment

Event Sourcing

Might make 
sense for e.g. 

statistics

CQRS

Can you model 
statistics differently?

Statistics is probably a 
different bounded 
context.

Why would you use 
CQRS for the rest?



Layers

•Actually pattern in the original DDD book.

•Separate logic

•To isolate logic in one place

•To make the system easier to understandPersistence

Logic

UI



Hexagonal

•Business logic exports 
ports

•Adapters implement 
ports

•Logic isolated and easy 
to understand

•Better testability

Business Logic

Persistence

Business
Event

Notification

Admin

Database
adapter

EMail
adapter

Admin UI

UI



Conclusion
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Big Picture Event 
Storming

Bounded Context

Core Domain

Strategic Design?

Team Topologies
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Conclusion

Big Picture Event 
Storming

Bounded Context

Core Domain

Strategic Design?

Team Topologies

More details

Layers?

Hexagonal?

Design-level Event 
Storming

Tactical Design



Note

•This might look like a waterfall.

• It is about different levels of abstractions.

•Work in iterations!

•Change the level of abstraction!



Mitgestalter:innen gesucht!







Send email to jfs2024@ewolff.com
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