
Domain-driven Design: A 
Complete Example

Eberhard Wolff

Head of Architecture

https://swaglab.rocks/

https://ewolff.com/



Why This Talk?

•Domain-driven Design provides lots of tools.

•Which are really useful?

•How can you combine them?



Event Storming



Why Event Storming?

Domain Experts

Understand the domain

Software Engineers

Structure knowledge
to become software

How does domain
knowledge become

software?



Why Event Storming?

Domain Experts Software Engineers

Model



What is Event Storming?

•Event in the past

•At least noun + verb

•Verb in past tense

•Write event on orange sticky

Order 
accepted



Phase: Chaotic Exploration

•Create as many events as possible



Phase: Enforce the timeline



Phase: Enforce the timeline



Phase: Identify Swim Lanes

•Parallel activities
Swimlane 
Invoicing

Swimlane 
Delivery



Phase: Identify Pivotal Events

•Afterwards the world is different

Order accepted
Parcel left 
warehouse

Swimlane 
Invoicing

Swimlane 
Delivery



Event Storming: Benefits

•Low-tech: easy to understand for domain experts

•People can work in parallel.

•Social structures become obvious.



Event Storming: Result

•Common understanding of the domain

•A model of the domain

…that must be tweaked before it can be implemented



Bounded Context



Why Bounded Context?

•Coarse-grained split of the domain

•A scope that might be assigned to a team



Bounded Context

Bounds

Model i.e. 
Code

Ubiquitous 
Language



Ubiquituous Language

Database

Code Software Engineers
Domain Experts



Invoicing
Process

Bounded Context Example

Customer who pays the bill

Delivery

Customer who the products 
are sent to 



Parcel left 
warehouse

Identify Candidates for Bounded Contexts

•Areas between swim lanes and pivotal events are 
good candidates for Bounded Contexts

Swimlane 
Delivery

Order accepted Swimlane 
Invoicing



Identify Candidates for Bounded Contexts

•Areas between swim lanes and pivotal events are 
good candidates for Bounded Contexts

Invoicing

Delivery ProcessOrder Processing



Identify Candidates for Bounded Contexts

•Reimbursements handled by invoicing?

•Return handled by delivery process?

Invoicing

Delivery ProcessOrder Processing



Bounded Context: Benefits

•Structures domain logic

•Request probably local to one bounded context

•Changes probably local to one bounded context

• i.e. a great architecture!



Core Domain



Core Domain

•Core domain = motivation for the project

•Reduce the complexity of the model

•Focus on maintainability of this part of the system



What is the Core Domain?

•Differentiation: quick and reliable delivery 

•Core domain = delivery process

Invoicing

Delivery ProcessOrder Processing



Core Domain: Result

•Clear focus

•Better understanding of the domain



Not Strategic Design but
Team Topologies



Why Team Topologies?

•Somehow teams need to collaborate

•Not too complex

• Intuitive (?)

•Covers more “fracture planes” then just Bounded 
Contexts e.g. location

•Covers more team types than development teams



Team Topologies

Stream-aligned team

Platform team

Enabling team

Complicated 
Subsystem 

team

XaaS

Collaboration

Facilitating

XaaS



Team Topologies

Order Processing

Kubernetes / CI Team

Delivery 
Optimization

Invoicing

Delivery

XaaS

Architecture

Collaboration

Facilitating

XaaS



Team Topologies: Result

•Team setup defined

•Collaborations defined



https://software-architektur.tv/2024/04/18/folge213.html

https://software-architektur.tv/2024/04/18/folge213.html


Finally: Coding! 



Finally: Coding! 
(sort of )



Tactical Design



Why Tactical Design?

•Object-oriented concepts

•Make a lot of sense to build good object-oriented 
systems!



Tactical Design

Entity
Value
Object

Domain
Event

Identity: 
a person

Value: 
2€, 2m

Something 
has 

happened.

Matters to 
domain 
experts



Tactical Design

Entity
Value
Object

Aggregate FactoryRepository

Domain
Event

Consists of Entities 
and Value Objects

Aggregate Root 
ensures consistency

Illusion of a 
collection of 
aggregates

Creates complex 
value objects and 

aggregates



Tactical Design

Entity
Value
Object

Aggregate FactoryRepository

Service

Domain
Event

Logic doesn‘t fit in 
Entities / 

Aggregates



Example: Delivery Bounded Context

Parcel
<<Entity>>

Adress
<<ValueObject>>

Customer 
<<Aggregate>>

Delivery
Factory

Delivery
Repository

ScheduleDelivery
<<Service>>

DeliveryScheduled
<<Event>>

Delivery
<<Aggregate>>



https://software-architektur.tv/2024/05/03/folge214.html



Alternative: Functional Programming

•Side-effect free functional core

• i.e. no entities, aggregates etc

•Side-effects separated



Alternatives for Less Complex Systems

•Transaction script: handles a single request from the 
presentation incl. database code.

•Table model: Single instance handles business logic for 
all rows in a database table or view.



https://software-architektur.tv/2024/05/03/folge214.html

https://software-architektur.tv/2024/05/03/folge214.html


Framework?

•POJO (Plain Old Java Objects) might be enough

•https://xmolecules.org/ supports DDD concepts

•https://odrotbohm.de/2020/03/Implementing-DDD-
Building-Blocks-in-Java/ describes the idea

https://xmolecules.org/
https://odrotbohm.de/2020/03/Implementing-DDD-Building-Blocks-in-Java/
https://odrotbohm.de/2020/03/Implementing-DDD-Building-Blocks-in-Java/


https://software-architektur.tv/2024/05/31/episode219.html

https://software-architektur.tv/2024/05/31/episode219.html


Framework?

•Might use architecture management tools to enforce 
dependencies

•https://software-architektur.tv/
tags.html#Architecture%20Management

https://software-architektur.tv/tags.html#Architecture%20Management
https://software-architektur.tv/tags.html#Architecture%20Management


Design-Level Event Storming

Actor

Command

System

Domain 
Event

External 
System

Policy

Command

Read 
Model

UI



Design-Level Event Storming

•Helps to understand the domain on the necessary 
level of detail

•But no easy mapping to tactical domain-driven design



Design-Level Event Storming

Actor

Command

System

Domain 
Event

External 
System

Policy

Command

Read 
Model

UI

Aggregate

Aggregate, 
Service

Aggregate, 
Service

Aggregate, 
Service

Domain 
Event



Event Sourcing

•Store events that lead to a specific state

•Might also store state (optional)

•System of record: State or events



Interface

Calls, messages, …

Event Store

Order Cancelled 42

Order Accepted 23

Order Accepted 42
Order 42

Order 23

Order Delivered 23

Order 23 

State

Order 42  



StateEvents
Calculate

State on Demand

State+
Events

Event
Sourcing



Event Sourcing Example

Event Store

Delivery loaded 42

Delivery picked up 42

Delivery scheduled 42

Delivery delivered 42

Delivery acknowledged 42

Can you model 
delivery without an 
event store?

Why calculate the 
state of a delivery 
based on the 
events and not 
store the state?



CQRS

•Command Query Responsibility Separation

•E.g. separate read and write



Command
Queue

Command

Command

Command

Command
Handler

Query
Handler

Command
Store

Database

Read Invoice

Payment Read 
Replica?

Create Invoice!

CQRS



Command
Queue

Command

Command

Command

Command
Handler

Query
Handler

Command
Store

Snapshot

Read Invoice

Create Invoice!

Payment

Event Sourcing

Might make 
sense for e.g. 

statistics

CQRS



Command
Queue

Command

Command

Command

Command
Handler

Query
Handler

Command
Store

Snapshot

Read Invoice

Create Invoice!

Payment

Event Sourcing

Might make 
sense for e.g. 

statistics

CQRS

Can you model 
statistics differently?

Statistics is probably a 
different bounded 
context.

Why would you use 
CQRS for the rest?



Layers

•Actually pattern in the original DDD book.

•Separate logic

•To isolate logic in one place

•To make the system easier to understandPersistence

Logic

UI



Hexagonal

•Business logic exports 
ports

•Adapters implement 
ports

•Logic isolated and easy 
to understand

•Better testability

Business Logic

Persistence

Business
Event

Notification

Admin

Database
adapter

EMail
adapter

Admin UI

UI



Conclusion



Conclusion

Big Picture Event 
Storming

Bounded Context

Core Domain

Strategic Design?

Team Topologies

More details

Event Sourcing?

CQRS?

Layers?

Hexagonal?

Design-level Event 
Storming

Tactical Design



Conclusion

Big Picture Event 
Storming

Bounded Context

Core Domain

Strategic Design?

Team Topologies

More details

Layers?

Hexagonal?

Design-level Event 
Storming

Tactical Design



Note

•This might look like a waterfall.

• It is about different levels of abstractions.

•Work in iterations!

•Change the level of abstraction!



Mitgestalter:innen gesucht!







Send email to jfs2024@ewolff.com

Slides

+ Sample Microservices Book DE / EN

+ Sample Practical Microservices DE/EN

+ Sample of Continuous Delivery Book DE

Powered by Amazon Lambda

& Microservices
EMail address logged for 14 days,
wrong addressed emails handled manually 


	Folie 1: Domain-driven Design: A Complete Example
	Folie 2: Why This Talk?
	Folie 3: Event Storming
	Folie 4: Why Event Storming?
	Folie 5: Why Event Storming?
	Folie 6: What is Event Storming?
	Folie 7: Phase: Chaotic Exploration
	Folie 8: Phase: Enforce the timeline
	Folie 9: Phase: Enforce the timeline
	Folie 10: Phase: Identify Swim Lanes
	Folie 11: Phase: Identify Pivotal Events
	Folie 12: Event Storming: Benefits
	Folie 13: Event Storming: Result
	Folie 14: Bounded Context
	Folie 15: Why Bounded Context?
	Folie 16: Bounded Context
	Folie 17: Ubiquituous Language
	Folie 18: Bounded Context Example
	Folie 19: Identify Candidates for Bounded Contexts
	Folie 20: Identify Candidates for Bounded Contexts
	Folie 21: Identify Candidates for Bounded Contexts
	Folie 22: Bounded Context: Benefits
	Folie 23: Core Domain
	Folie 24: Core Domain
	Folie 25: What is the Core Domain?
	Folie 26: Core Domain: Result
	Folie 31: Not Strategic Design but Team Topologies
	Folie 32: Why Team Topologies?
	Folie 33: Team Topologies
	Folie 34: Team Topologies
	Folie 35: Team Topologies: Result
	Folie 36
	Folie 43: Finally: Coding! 🎉 
	Folie 44: Finally: Coding! 🎉 (sort of 😬)
	Folie 45: Tactical Design
	Folie 46: Why Tactical Design?
	Folie 47: Tactical Design
	Folie 48: Tactical Design
	Folie 49: Tactical Design
	Folie 50: Example: Delivery Bounded Context
	Folie 51
	Folie 52: Alternative: Functional Programming
	Folie 53: Alternatives for Less Complex Systems
	Folie 54
	Folie 55: Framework?
	Folie 56
	Folie 57: Framework?
	Folie 58: Design-Level Event Storming
	Folie 59: Design-Level Event Storming
	Folie 60: Design-Level Event Storming
	Folie 61: Event Sourcing
	Folie 62
	Folie 63
	Folie 64: Event Sourcing Example
	Folie 65: CQRS
	Folie 66: CQRS
	Folie 67: CQRS
	Folie 68: CQRS
	Folie 69: Layers
	Folie 70: Hexagonal
	Folie 71: Conclusion
	Folie 72: Conclusion
	Folie 73: Conclusion
	Folie 74: Note
	Folie 75
	Folie 76
	Folie 77
	Folie 78

