
Abstrakt Foto erstellt von freepik - de.freepik.com Hi
nt

er
gr

un
d

Fo
to

 e
rs

te
llt

 v
on

 a
nd

re
as

 -
de

.fr
ee

pi
k.

co
m

How to scale your Applications

with Micro-Frontends

Java Forum Stuttgart 2022

Mario Goller
Swisscom AG

https://de.freepik.com/fotos/hintergrund

Example:
Amazon websites

The Way to Micro-Frontends

Full Stack
Team

Fr
on

te
nd

Ba
ck

en
d

Da
ta

The Monolith

Backend /
Devops Team

Fr
on

te
nd

Ba
ck

en
d

Da
ta

Frontend Team

Frontend & Backend

Any organization that designs a
system (defined broadly) will

produce a design whose structure
is a copy of the organization’s

communication structure.

— M. Conway

Conway’s Law

We need to deliver more and faster!

Architecture with Microservices

No E2E
responsibility!

Pr
od

uc
t S

er
vi

ce

Fr
on

te
nd

Ba
ck

en
d

Da
ta

Frontend Team

Aggregation Layer

Ca
rt

 S
er

vi
ce

Lo
gi

n
Se

rv
ic

e

Ch
ec

ko
ut

 S
er

vi
ce

Microservices

Team A Team B Team C Team D

Backend /
Devops Team

Icons provided by https://www.flaticon.com

Our daily Fight @Frontend

Ø Scaling Issues
• Frontend Application =

Frontend team

ØCode and Testing Complexity
• Increased Risk for

deployments
• Slows continuous

delivery

ØCommunication Issues
• Communication

overhead for managing
different parts of the UI

Technical
Teams

Product
Teams

Team
Catalog

Team
Cart

Team
Checkout

Frontend

Business Operations

Product Service Cart Service
Checkout
Service

Adding a new featureInter-team communication
Waiting time

Micro-FrontendsLayered Architecture

Icons provided by https://www.flaticon.com

Pr
od

uc
t S

er
vi

ce

Fr
on

te
nd

Ba
ck

en
d

Da
ta

Pr
od

uc
t

Se
ct

io
n

API Gateway / BFF

Ca
rt

 S
er

vi
ce

Lo
gi

n
Se

rv
ic

e

Ch
ec

ko
ut

 S
er

vi
ce

Base Application

Ca
rt

 S
ec

tio
n

O
rd

er

Se
ct

io
n

Ch
ec

ko
ut

Se

ct
io

nFrontend Team

End to End
Stream-aligned

Teams

Microservices + Micro Frontends

Icons provided by https://www.flaticon.com

Micro-Frontends are quite old in the Browser

“Self-Contained Systems”

“Vertically decomposed applications”

“Microservice websites”

What is a Micro-Frontend?

“ Micro-Frontends are the technical representation of a
business subdomain, they allow independent

implementations with the same or different technology.

Finaly, they should minimize the code shared with other
subdomains and they are owned by a single team. ”

Luca Mezzalira (AWS)

“An architectural style where independently
deliverable frontend applications are composed into a

greater whole”
https://martinfowler.com

https://martinfowler.com/articles/micro-frontends.html

Key Benefits of Micro-Frontends

ü Better scalability
ü Codebases are smaller and more manageable
ü Team ownership
ü Faster development
ü Deployment independence
ü Upgrade, update, or even rewrite parts of the

frontend more smoothly
ü Isolate failure - Easier to ensure that rest of the

app remains stable
ü Easier testing
ü (Be Technology Agnostic)

Changes in the Build and Deployment Process

https://www.trendmicro.com

https://www.trendmicro.com/de_de/devops/21/h/micro-frontend-guide-technical-integrations.html

How to identify Micro Frontends in your Application

• Defnied around Domains, Subdomains
• Creating a Bounded Context

Header

Footer

CartProduct Detail Page

Customer Portal @ Swisscom

Splitting your Application

Things we need to consider

Ø Composition of fragments
Ø Routing between views
Ø Communication between fragments

https://medium.com/@lucamezzalira/micro-frontends-decisions-framework-ebcd22256513

https://medium.com/@lucamezzalira/micro-frontends-decisions-framework-ebcd22256513

Build-time
Integration

Runtime
Integration

Integrating Multiple Frontends

Build-Time Integration

• Defining and bundling dependend UI parts at build time

• Each micro-frontend is a package

• Package is integrated to the Application Shell (MainApp)

• Whole Application is built and deployed

Runtime Integration

• Load and integrate dependend UI parts (fragments/views) when the
page gets requested by the client

Server Side Composition

Micro Frontends in Action (Michael Geers)

https://learning.oreilly.com/library/view/micro-frontends-in/9781617296871/
https://learning.oreilly.com/search/?query=author%3A%22Michael%20Geers%22&sort=relevance&highlight=true

Server Side Includes (SSI)

NGINX configuration

Main webpage markup

• server-side template
composition technically works
well with SEO

• it can’t load the new Micro-
Frontend for the client without a
full page reload at most of the
time

Other solutions

Edge Side Includes (ESI)
• ESI is a simple markup language that allows the inclusion of fragments

from other URLs.
Zalando Tailor.js
• Tailor is a Node.js based fragment service open-sourced by Zalando and runs

as stand-alone service
• It is part of Project Mosaic - umbrella project for frontend modularization

https://levelup.gitconnected.com

https://en.wikipedia.org/wiki/Edge_Side_Includes
https://github.com/zalando/tailor
https://www.mosaic9.org/
https://levelup.gitconnected.com/brief-introduction-to-micro-frontends-architecture-ec928c587727

Client Side Composition

Micro Frontends in Action (Michael Geers)

https://learning.oreilly.com/library/view/micro-frontends-in/9781617296871/
https://learning.oreilly.com/search/?query=author%3A%22Michael%20Geers%22&sort=relevance&highlight=true

Using Webpack 5 Module Federation
https://webpack.js.org/plugins/module-federation-plugin/

• each part of the frontend would be a separate build
• These builds are compiled as "Containers”
• Containers can be referenced by applications or other containers
• Container is the remote and the consumer of the container is the host.
• The "remote" can expose modules to the "host”
• The "host" can use such modules ("remote modules”)

https://github.com/sokra/slides/blob/master/content/ModuleFederationWebpack5.md

https://github.com/sokra/slides/blob/master/content/ModuleFederationWebpack5.md

Demo

Challenges
with
Micro-
Frontends

Web Performance

• Bundle size - Each micro application includes its own
copy of the framework and the entire toolkit.

• Loading Time - Multiplies the amount of data
downloaded by the user

• Vendor packages can solve this problem (However, it
violates the idea of team independence)

UI/UX Consistency

• Design System
Ø Design Tokens (fonts, colors, …)
Ø (Re-)Usable Components (buttons, …)

Ø Responsive Design (Breakpoints, Grid, …)
Ø Accessibility

• Shared fundamentals
Ø Basic Styles & Typography
Ø CSS Resets
Ø Tracking
Ø Error Handling

Conclusion

When to use micro frontends
ü Huge code base where different teams are contributing to
ü Code ownership get messy
ü Deployment is delayed because of other part of the application
ü You have to use different FE frameworks

When not to use micro frontends
v Small organization, small number of teams
v Backend is owned by dedicated centralized teams
v everyone works on separate modules rather than

together towards one product
v Software Modularization is already managed very

well (aka. Modulith)

@gollerMario

mario.goller@swisscom.com

Photo by Matt Jones on Unsplash

https://unsplash.com/@mattjonesgram?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/thank-you?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

