

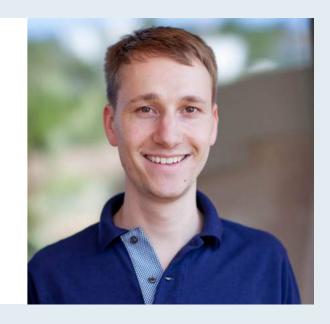
JAVA FORUM STUTTGART 2021

1000 Ways to Run Java in the Cloud

Talk by Enrique Llerena Domínguez & Fabian Keller

H

Enrique Llerena Domínguez


Senior Software Engineer @mimacom Machine Learning Enthusiast @127.0.0.1

@ellerenad www.ienjoysoftware.dev

Fabian Keller

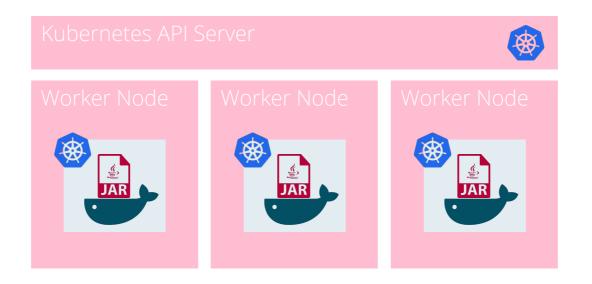
Head of Cloud Innovation @mimacom Woodworker @127.0.0.1

@_fabiankeller www.fabian-keller.de

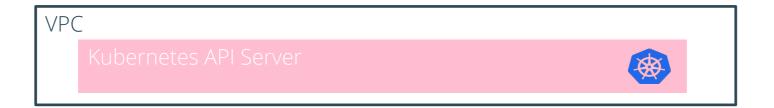
We need to run our Java application in the cloud.

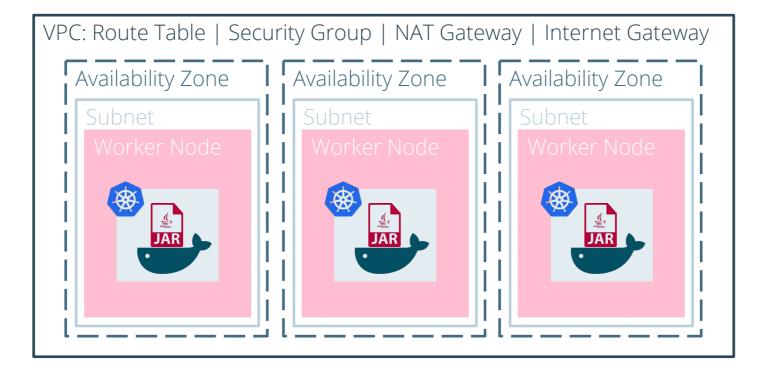
Build the app

Containerize

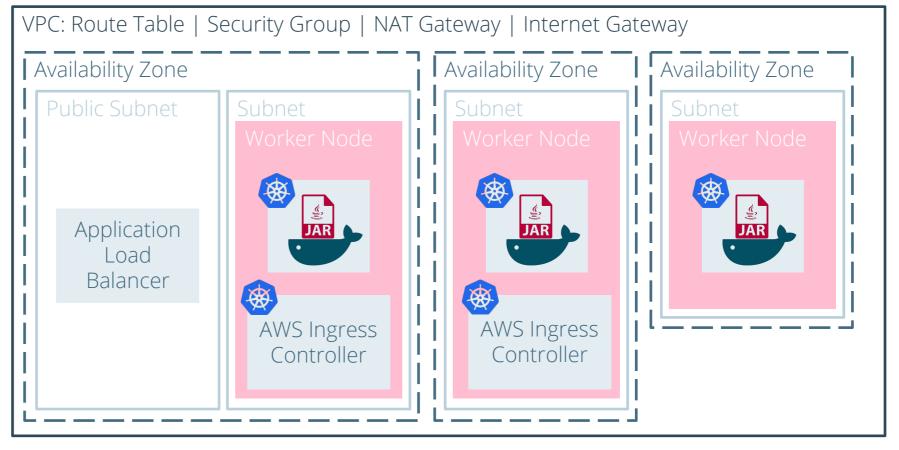


Make a Pod




Deploy the Cluster

Add a Network



Add Ingress Routing

VPC
Kubernetes API Server

Certificate Manager

Route53

Can your application answer 1 request in less than a second?

1 request per second

requests per minute

requests per hour

86.400 requests per day

That's easy! Less than 80k requests per day

→ single instance deployment ©

Goals

How do we actually run Java in the cloud nowadays?

- Different ways that are already productive or in its way
- The challenges
- Reduce responsibilities in product teams to gain speed

Possible combinations

Base Software

Ubuntu

Alpine

. . .

Runtimes

GraalVM

OpenJDK

AWS Corretto

Oracle JDK

Packaging

Buildpacks.io

Dockerfile

Docker Multi Stage

Hashicorp Packer

Podman

• • •

Compute

Public Cloud VMs

Managed container orchestrator

BYO K8s

Heroku / Cloud Foundry

AWS Beanstalk

Public Cloud Serverless

• • •

Deployment

Blue Green

Canary

Recreate

Rolling

Combinations

At least 1120 ©

It is not just a catchy title

Responsibilities

ROUTING **OPERATIONS** CODING **DFPI OYMENT SECURITY** PACKAGING COMPUTE Image Network Certificates Ingress Monitoring CI/CD App Building In-Transit Setup Service Deployment Log Encryption Compute Hardening Discovery Orchestration Aggregation Strategy At-Rest Backup & Dev Access Infrastructure OS as Code Recovery Control

Security

Concept

Business Value Impact

CODING

App

DEPLOYMENT

PACKAGING

COMPUTE

ROUTING

OPERATIONS

SECURITY

CI/CD

Image Building Network Setup

Ingress

Monitoring

Certificates
In-Transit

Deployment Strategy

Hardening

Compute Orchestration Service Discovery Log Aggregation

Encryption At-Rest

OS

Infrastructure as Code

Backup & Recovery

Dev Access Control

> Security Concept

Way 1 | Lightweight

BASE SOFTWARE

Ubuntu udfoundry/cflinuxfs3) RUNTIMES

OpenJDK

PACKAGING

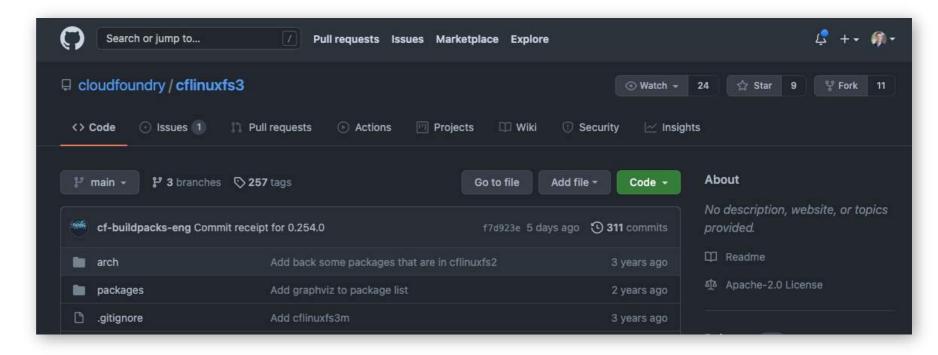
Cloud Foundry Buildpack COMPUTE

Cloud Foundry

CLOUD F QUNDRY

DEPLOYMENT

Blue-green


- Been part of the platform team for 3 customers
- Seen this stack for >100 teams running thousands of applications, with ~40% built with Java.

BASE SOFTWARE

- Hardened image used by Cloud Foundry by default
- Open-source: https://github.com/cloudfoundry/cflinuxfs3

RUNTIMES

OpenJDK

PACKAGING

Cloud Foundry Buildpack

Datadog Buildpack

Java Buildpack

Cloud Foundry Container Image

Datadog Agent

IRE

App

Base Image: cflinuxfs3

Buildpacks are essentially 4 scripts:

bin/detect whether or not to apply the buildpack to an app.

bin/supply provides dependencies for an app.

bin/finalize prepares the app for launch.

bin/release indicates how the app should be executed.

Cloud Native Buildpacks

Jar to Container Image With a Single Command

			S	4 - Jib ('℃') . •	
	Cloud Native Buildpacks	Dockerfile	source-to-image (s2i)	Jib	ko
Advanced Caching	Yes	No	Yes	No	No
Auto-detection	Yes	No	Yes	Yes	Yes
Bill-of-Materials	Yes	No	No	No	No
Modular / Pluggable	Yes	No	No	N/A [†]	N/A †
Multi-language	Yes	Yes	Yes	No	No
Multi-process	Yes	No	No	No	No
Minimal app image	Yes	Yes •	Yes ‡	Yes	Yes
Rebasing	Yes	No	No	No	No
Reproducibility	Yes	No	No	Yes	Yes
Reusability	Yes	No	Yes	N/A [†]	N/A †
	o Azure	 Amazon 	 OpenShift 	o Gradle	

```
# build container
pack build sample-app \
    --path samples/apps/java-maven \
    --builder cnbs/sample-builder:bionic

# and run it
docker run --rm -p 8080:8080 sample-app
```


COMPUTE

DEPLOYMENT

Cloud Foundry

Blue-green

- Highly opinionated PaaS
- Huge infrastructure footprint
- But scales to hundreds of teams
- All it takes to production is a: cf push -f manifest.yaml

```
applications:
- name: machine-pricing
  instances: 3
  routes:
  - route: machine-pricing.prod.machin.es
  buildpacks:
    - java buildpack
    - datadog buildpack
  path: /machine-pricing/target/mp-2.5.3.jar
  memory: 4GB
  services:
    - pricing-db
name: spare-parts-pricing
  instances: 2
  routes:
  - route: spare-parts-pricing.prod.machin.es
  buildpacks:
    java_buildpack

    datadog buildpack

  path: /spare-parts-pricing/target/spp-1.0.3.jar
  memory: 3GB
```


Way 1 | Responsibilities

CODING

App

DEPLOYMENT

PACKAGING

COMPUTE

ROUTING

OPERATIONS

SECURITY

CI/CD

Image Building Network Setup

Ingress

Monitoring

Certificates
In-Transit

Deployment Strategy

Hardening

Compute Orchestration Service Discovery Log Aggregation

Encryption At-Rest

OS

Infrastructure as Code

Backup & Recovery

Dev Access Control

> Security Concept

Dev Team Responsibilities

What went well?

Hardly any infrastructure effort in teams

Supports various languages

Very secure platform

Challenges

Highly opinionated, so only solves 80% of the use cases

Making data services available to Cloud Foundry is tricky

Platform footprint is huge and therefore not suitable for small teams

Way 1 Alternative Technologies

Alternative technology stacks with similar responsibilities

Azure App Service

- Used in multiple projects
- Simple to use, simple to understand
- Rather expensive when running a landscape with multiple services
- Supports most languages and even docker images

AWS Elastic Beanstalk

 Not used in production at any of our customers

Way 773 | Mediumweight

Way 773 | Medium Complexity

BASE SOFTWARE

Alpine

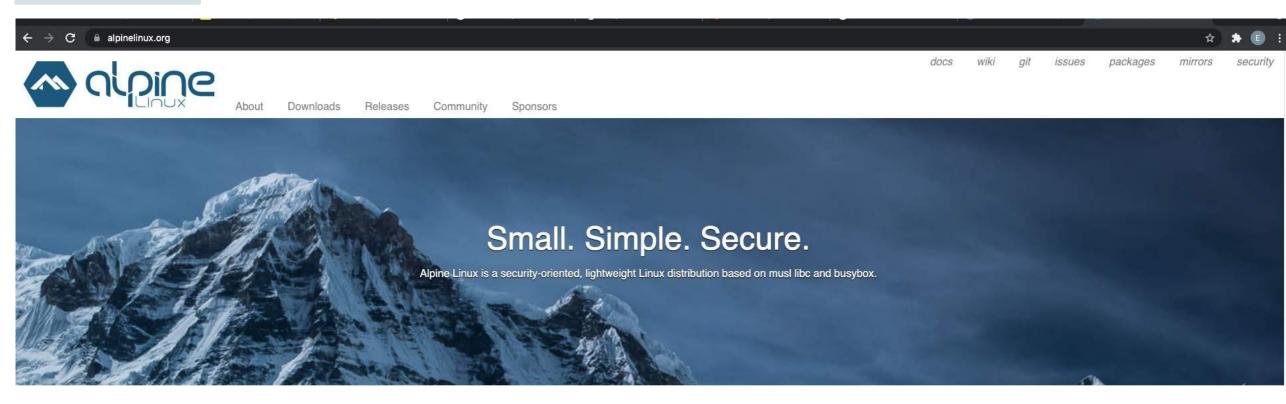
RUNTIMES

OpenJDK

PACKAGING

Docker Multi Stage COMPUTE

Managed container orchestrator


DEPLOYMENT

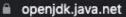
Blue-green

- Java application supporting customer facing operations
- Around 100k requests per day

BASE SOFTWARE

Alpine

https://wiki.alpinelinux.org/wiki/How_to_get_regular_stuff_working


RUNTIMES

OpenJDK

Workshop

OpenJDK FAQ Installing Contributing Sponsoring Developers' Guide Vulnerabilities

Mailing lists IRC · Wiki

Bylaws - Census Legal

JEP Process

search

Source code Mercurial GitHub

Groups

(overview) Adoption Build Client Libraries Compatibility & Specification Review Compiler Conformance Core Libraries Governing Board HotSpot IDE Tooling & Support Internationalization Members Networking

Web Projects

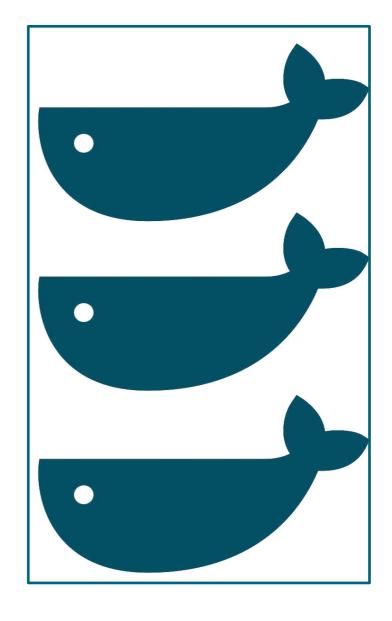
Porters Quality Security Serviceability Vulnerability

(overview)
Amber
Annotations Pipeline
2.0
Audio Engine
Build Infrastructure
Caciocavallo
Closures
Code Tools

What is this? The place to collaborate on an opensource implementation of the Java Platform, Standard Edition, and related projects. (Learn more.)

Download and install the open-source JDK for most popular Linux distributions. Oracle's free, GPL-licensed, production-ready OpenJDK JDK 16 binaries are at **jdk.java.net/16**; Oracle's commercially-licensed JDK 16 binaries for Linux, macOS, and Windows, based on the same code, are here.

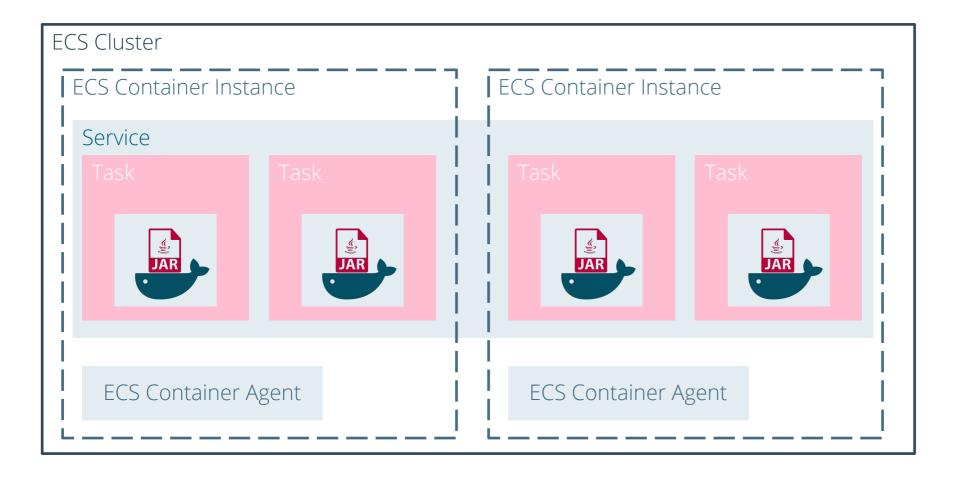
Learn how to use the JDK to write applications for a wide range of environments.


Hack on the JDK itself, right here in the OpenJDK Community: Browse the code on the web, clone a Mercurial repository to make a local copy, and contribute a patch to fix a bug, enhance an existing component, or define a new feature.

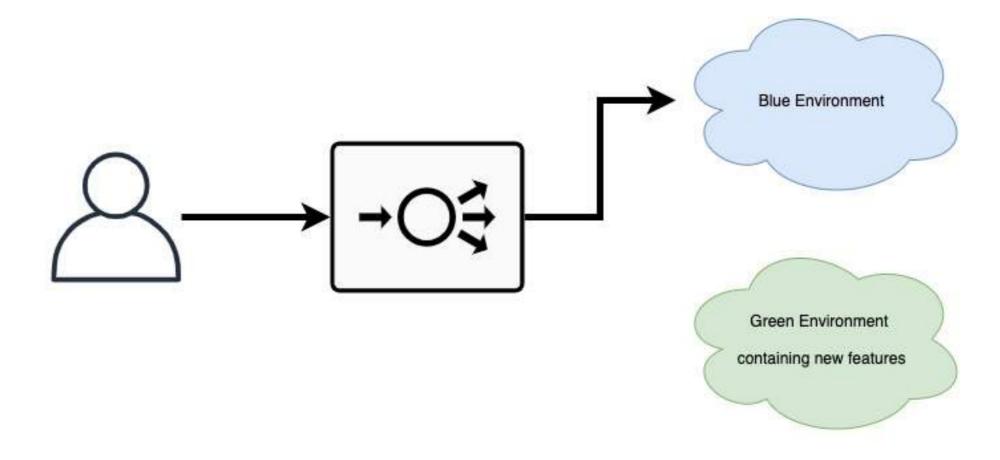
PACKAGING

Docker Multi Stage

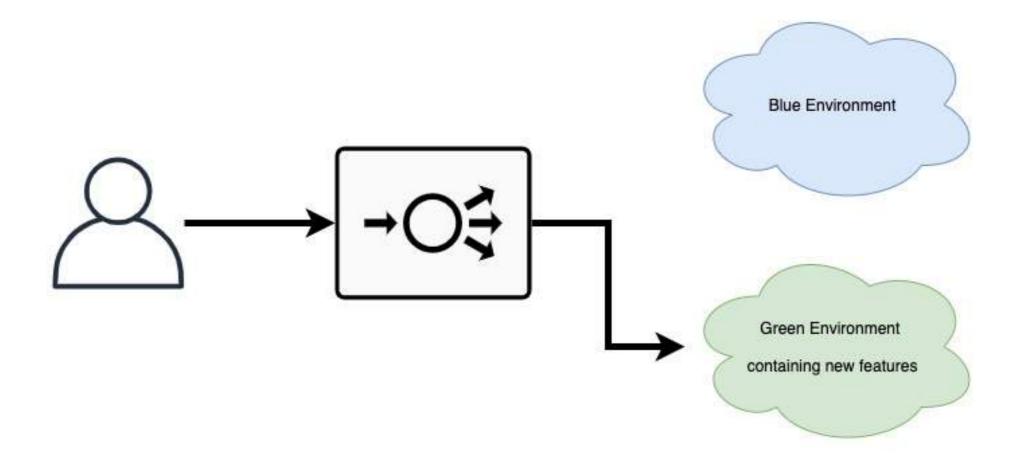
```
# syntax=docker/dockerfile:1
FROM golang:1.16 AS builder
WORKDIR /go/src/github.com/alexellis/href-counter/
RUN go get -d -v golang.org/x/net/html
COPY app.go ./
RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o app .


FROM alpine:latest
RUN apk --no-cache add ca-certificates
WORKDIR /root/
COPY --from=builder /go/src/github.com/alexellis/href-counter/app ./
CMD ["./app"]
```


COMPUTE


Managed container orchestrator

DEPLOYMENT


Blue-green

DEPLOYMENT

Blue-green

Way 773 | Responsibilities

CODING

App

DEPLOYMENT

PACKAGING

COMPUTE

ROUTING

OPERATIONS

SECURITY

CI/CD

Image Building Network Setup

Ingress

Monitoring

Certificates
In-Transit

Deployment strategy

Hardening

Compute Orchestration

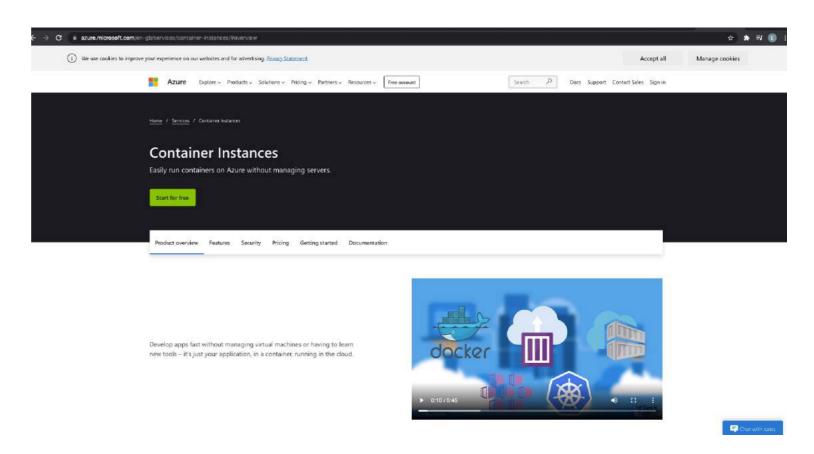
Service Discovery Log Aggregation Encryption At-Rest

OS

Infrastructure as Code Backup & Recovery

Dev Access Control

> Security Concept


Dev Team Responsibilities

Way 773 Alternative Technologies

Alternative technology stacks with similar responsibilities

Azure Container Instances

What went well?

Easy to deploy

Easy to scale

There are ways to break into the containers

Challenges

No way to test the configuration without deploying

A lot of manual configurations: security group, IAM policies, load balancers

Way 1087 | Heavy Complexity

BASE SOFTWARE
Ubuntu

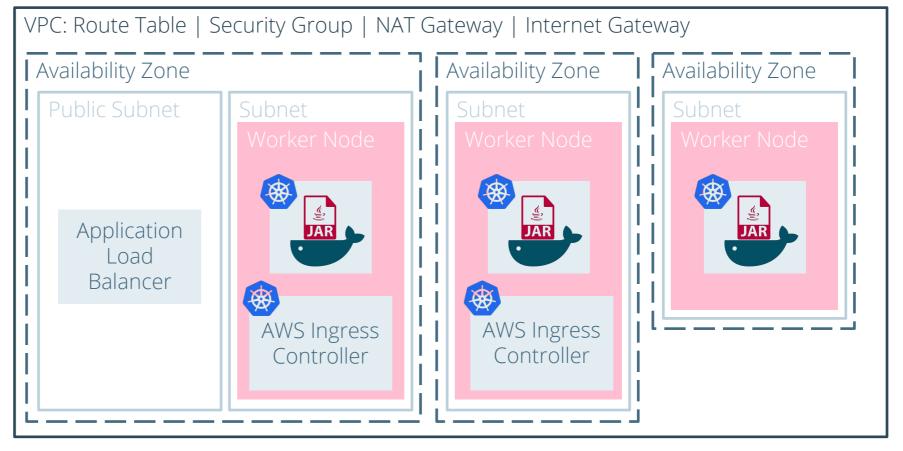
RUNTIMES OpenJDK **PACKAGING**

Docker Multi Stage COMPUTE

BYO K8s

DEPLOYMENT

Rolling


- Kubernetes is still young and the ecosystem is still evolving
- Totally hyped and must-use platform since 2019
- FOMO for all not using K8s

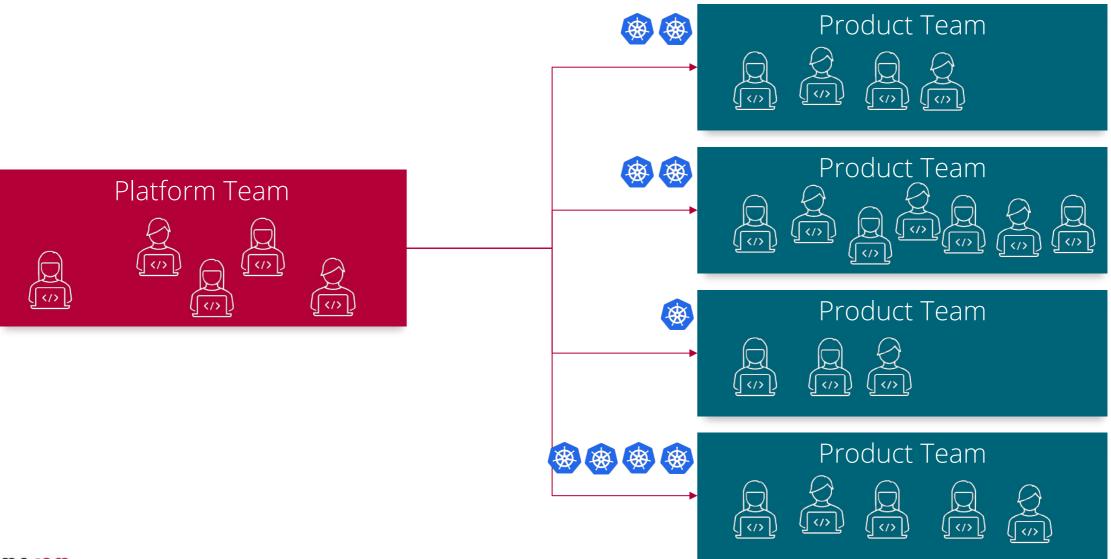
Native EKS | AKS

VPC
Kubernetes API Server

Certificate Manager

Route53

Way 1087 | Responsibilities


ROUTING **DFPI OYMENT OPERATIONS SECURITY** CODING PACKAGING COMPUTE Certificates Image Network Monitoring Ingress CI/CD App Building In-Transit Setup Encryption Service Deployment Log Compute Hardening Aggregation Orchestration Discovery At-Rest Strategy Dev Access Backup & Infrastructure OS Recovery as Code Control Security Concept

Dev Team Responsibilities

Kubernetes as a Service

Platform Team

What the platform team does

Builds on existing software:

VMware Tanzu

SAP Gardener

- Provides isolated K8s clusters on demand
- Enables self-service provisioning of data services
- Solves cross-cutting concerns: routing, monitoring, logging, etc.
- Using Kubernetes in platform teams with 2 customers
- >40 teams working on this
- ~50% product teams building Java apps

Way 1143 | Responsibilities

CODING

App

DEPLOYMENT

PACKAGING

COMPUTE

ROUTING

OPERATIONS

SECURITY

CI/CD

Image Building Network Setup

Ingress

Monitoring

Certificates
In-Transit

Deployment Strategy

Hardening

Compute Orchestration Service Discovery Log Aggregation Encryption At-Rest

OS

Infrastructure as Code Backup & Recovery

Dev Access Control

> Security Concept

Dev Team Responsibilities

Way 1143 | Responsibilities

CODING App

DEPLOYMENT

PACKAGING

COMPUTE

ROUTING

OPERATIONS

SECURITY

CI/CD

Image Building Network Setup

Ingress

Monitoring

Certificates In-Transit

Deployment Strategy

Hardening

Compute Orchestration Service Discovery Log Aggregation Encryption At-Rest

OS

Infrastructure as Code

Backup & Recovery

Dev Access Control

Security Concept

Platform Team Responsibilities

What went well?

Consistent experience across all teams

Reduced responsibilities significantly for dev teams

Using Kubernetes this way is actually fun

Challenges

Opinionated stack. Does not work for all use cases.

Integration of native cloud services still challenging (though great support with <u>crossplane.io</u>)

Building and running the platform is a lot of effort.

Conclusion

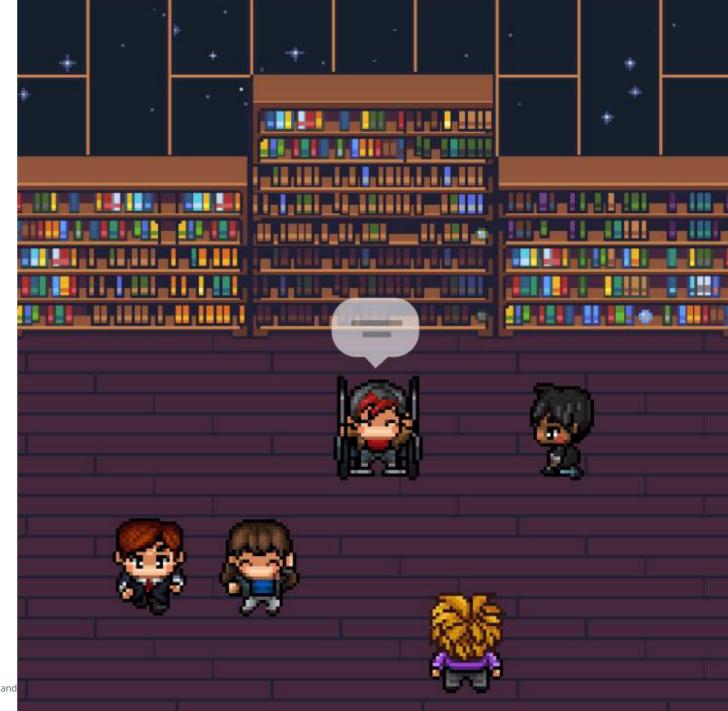
 There is not a single perfect way to run java in the cloud, but there are a lot of wrong ones.

 When it is about delivering business value, reducing the load on the infrastructure is worth it.

How to Write Your ADR

Make that decision which infrastructure to take

- 1. Take the list of responsibilites and identify which ones you can live with
- 2. PoC: Try to manually deploy an example with the infrastructure stack you chose
- 3. Learn and update your expectations on your responsibilities.
- 4. Decide.


Scan the QR code to participate in the raffle!

Join us at Gather Town!

Link in the comments;)

Enrique Llerena Domínguez

Senior Software Engineer @mimacom Robo Arm Engineer @127.0.0.1

@ellerenad www.ienjoysoftware.dev

Fabian Keller

Head of Cloud Innovation @mimacom Woodworker @127.0.0.1

@_fabiankeller www.fabian-keller.de

