
7th July, 2011

Benjamin Reimold & Stephan Linzner

Safety First - Android sicher
programmieren!

!"##

Stephan Linzner

Freelance Software Engineer

Mobile Developer

Founder of Stuttgart GTUG

Contact:

@onlythoughtwork
XING, Facebook

onlythoughtworks@gmail.com

Benjamin Reimold

Bachelor-Thesis 2011
(DH Stuttgart)

Mobile Developer

Member of Stuttgart GTUG

Contact:

@elektrojunge
XING

benjamin.reimold@aformatik.de

Introducing

✤ The android security model

✤ How to obtain information about installed apps

✤ Responsibility ahead!

✤ We‘re not done, yet!

✤ Conclusion

Agenda

How android works

Android security model

Coarse-grained security model

✤ Process isolation enforced by underlying linux kernel

✤ Desktop == single UID

✤ Android == UID per application

✤ Components always launched with UID of application owner

✤ Applications signed with the same key can run with the same UID

✤ Communication of android components via Binder IPC

Coarse-Grained security model

✤ Sandboxing

✤ Resources can be accessed by the owning application only

✤ Each application running in it‘s own VM

✤ Binder IPC to relax strict process boundaries

✤ (Broadcast-) Intents, Services, Content Providers, AIDL interfaces to
exchange data

Coarse-grained security model

✤ Signing of applications

✤ Android uses a new reputation approach for code signing

✤ Responsibility of the developer

✤ Developers build trust by building good applications

Fine-grained security model

✤ Permissions

✤ "A permission is a mechanism that enforces restrictions on the specific
operations that a particular process can perform"

✤ End-user model

Permission Types

✤ adb shell pm list permissions -s

✤ System permissions <uses-permission />

✤ Custom permissions <permission />

✤ Permission groups <permission-group />

✤ Permission trees <permission-tree />

How to obtain information
about installed apps

PackageManager utility methods

✤ Can be retrieved by calling Context.getPackageManager()

✤ Gather information about installed applications

✤ getInstalledPackages(int flags)

✤ getInstalledApplications(int flags)

✤ getLaunchIntentForPackage(String packageName)

ActivityManager utility methods

✤ Gather information about running tasks

✤ getRecentTasks(int maxNum, int flags) if the App
has GET_TASKS permission

✤ Use ActivityManager.RecentTask class to get the base Intent of an
Activity

Hello World Activity Manager!

✤ Components are exported when...

✤ Declaring an IntentFilter

✤ Exporting a component explicitly using
android:exported

✤ Good News: Components are private by default

Intents

✤ Intents don’t enforce security policy themselves, they are just
messengers

✤ Never put sensitive data i.e. password
"into" an Intent!

✤ Tip: Limit the scope of your Intent by adding
categories!

IntentFilters

✤ IntentFilters do not filter malicious Intents!

✤ Attackers can raise priority of their IntentFilter

✤ IntentFilter.setPriority(int priority)

✤ android:priority attribute

✤ Be specific! Add Actions/Categories and Data filters to
your IntentFilters to permit Intents to pass and save you from unwanted
consequences

Activities

✤ Use <activity android:permission=
 "de.otw.android.HARM_USER_DATA"/>

✤ Permissions are checked during Activity.startActivity() or
Activity.startActivityForResult();

✤ If the caller does not have the required permission then
SecurityException will be thrown (same as
Context.enforceCallingPermissions())

✤ Tip: Show a dialog to the user!

Services

✤ Client:

✤ Use Intent.setComponent() to explicitly specify the service

✤ Beware when using Binder interfaces!

✤ Check permission in ServiceConnection callback using
the PackageManager before the exchange of sensitive data

✤ Control access with Binder utility methods +
Context.check*Permission() methods when using an
IInterface (i.e. with RemoteCallableList)

Services

✤ Server

✤ Enforce permission with <service android:permission />

✤ Finer access control, when using a Binder and Context utility methods

BroadcastReceiver

✤ Receiver

✤ Enforce permission by using android:permission attribute in the
<receiver /> - Tag and ActivityManager will take care

✤ Sender

✤ Take control who will receive your Intent --> Common source of data
leakage

✤ Enforce a permission by using Context.sendBroadcast(Intent
intent, String receiverPermission)

✤ Tip: Don´t use sticky broadcasts for sensitive data!

ContentProvider

✤ Beware when using ContentProvider internally, explicitly set
android:exported="false"

✤ Separate read and write permissions

✤ android:readPermission
✤ android:writePermission
✤ android:permission

✤ Use <path-permission>-Tag to control access to specific uris

ContentProviders

✤ Enable uri access for all resources with
android:grantUriPermission="true"

✤ Use <grant-uri-permission /> to gain more granular control over

✤ Normal use via Intent.FLAG_GRANT_READ_URI_PERMISSION or
Intent.FLAG_GRANT_WRITE_URI_PERMISSION

✤ Implement your own policy with grantUriPermission() &
revokeUriPermission()

ContentProviders

✤ Tips:

✤ Always check any received data (Intents, Binder Interfaces), which
you use in ContentProvider/SQLiteDatabaseHelper queries

✤ Clearly separate SQL Statement and the data it contains, use
parameterized queries!

✤ Make your selection fields final to avoid accidental contamination

✤ Completely avoid selections, defining CONTENT_URIs only!

File I/O

✤ Files, DB and shared preferences can be created with a Permission
(>> SKYPE!)

✤ Context.MODE_PRIVATE

✤ Context.MODE_WORLD_READABLE

✤ Context.MODE_WORLD_WRITEABLE

File I/O

✤ Tips:

✤ Think about the consequences when creating files (sensitive data,
permissions), especially if making a file world readable!

✤ Ask the user to grant a permission if you do so!

✤ Don´t store sensitive data on the SD Card/DB unless it is encrypted!
(store the key inside the private file area)

You are responsible!

✤ Consider how you will keep user's data safe!

✤ Protect all user input & data to prevent data leakage!

✤ Require a permission or show a dialog to the user that another
component is about to access his data!

✤ Deal with bad input parameters (i.e. Intent data, queries on
ContentProvider)!

✤ Minimize application permissions because it minimizes the
consequences of potential security flaws!

Android in Stuttgart

✤ Stuttgart GTUG

✤ http://stuttgart.gtugs.org

✤ SIG Android

✤ http://jugs.de/sig-android.html

Article in Android360 2.11!

?

