
Developer-First Gradle
Verständliche Builds durch klare Trennung von

Zweck und imperativer Logik

speaker {
 name = "Stefan Wolf"
 role = "Principal Software Engineer @ Gradle"
 github = "wolfs"
}

Table of Contents

Challenges

Vision & Principles

Building blocks

Declarative Gradle Early Access Preview 3

What now?

What is Gradle

What’s next in Declarative Gradle?

What is Gradle, really?

4

Developer Productivity
Engineering (DPE)

5

6

Developer Productivity
Engineering (DPE)
gradle.com/
developer-productivity-engineering

7

https://gradle.com/developer-productivity-engineering/
https://gradle.com/developer-productivity-engineering/

8

(f.k.a. Gradle Enterprise)

9
https://gradle.com/develocity/

https://gradle.com/develocity/

Who knows Gradle?

Who uses Gradle Build Tool?

Who knows Develocity / scans.gradle.com?

Who uses Develocity / scans.gradle.com?

Challenges 🔥
Gradle is flexible and extensible, but there are drawbacks…

⬢ Build scripts are expressed in Gradle terms

⬢ Build scripts can become complex

⬢ Tooling/IDE can only help so much before it's just guessing

Developer surveys say…
Gradle is used by a spectrum of roles.

⬢ Software Developers - Majority in most teams

○ Improve software by shipping features & fixing bugs

⬢ Build Engineers - Frequent in larger teams

○ Maintain the build and make Software Developers productive

⬢ 🎩 ↔ 🧢 - Frequent in smaller teams

○ Who’s the Gradle expert today?

Software Developer?

Build Engineer?

Both (at least 20% each)?

plugins {
 java
}
repositories {
 mavenCentral()
}
dependencies {
 testImplementation(libs.junit.jupiter)
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")
 api(libs.commons.math3)
 implementation(libs.guava)
}
tasks.named<Test>("test") {
 useJUnitPlatform()
}

Challenges 🤔
Software Developers need to think about Gradle plugins, tasks, and magic names to get their job

done.

plugins {
 id("my-conventions")
}
apply { from("dependencies.gradle.kts") }
tasks.named<Test>("test") {
 useJUnitPlatform()
 jvmArgs "-Dsamples=${projectDir.absolutePath}/samples"
}

... 500 lines ...

tasks.named<Test>("test") {
 useJUnitPlatform {
 includeTags("Fast")
 }
}

Challenges ☢
Complexity needs to be managed

Challenges 🛠

android {
 namespace = "com.example.${project.name}"
}
dependencies {
 testImplementation(libs.junit.jupiter)
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")
 if (!buildingForJava17()) {
 implementation(libs.java17CompatibilityShim)
 }
 implementation(libs.guava)
 listOf("foo", "bar").forEach { name ->
 implementation("org:${name}:1.0")
 }
}
fun buildingForJava17() = JavaVersion.current() == JavaVersion.VERSION_17

How can automated tooling make sense of this?

Recommendations today
Gradle builds can look declarative to manage the challenges.

⬢ Give your convention plugins meaningful names so Software Developers understand what

they are

⬢ Keep code in plugins to manage complexity

○ For custom build logic

○ For common defaults

⬢ Keep your build scripts simple - condition and loop free

Done?
This might not be enough.

plugins {
 id("backend-library-conventions")
}

dependencies {
 api(libs.commons.math3)
 implementation(libs.guava)
}

Vision
Elegant and extensible declarative build language that allows developers to describe any kind of software in
a clear and understandable way.

⬢ Extensible, flexible ✅
⬢ Declarative 😞
⬢ Clear and understandable 😫

Needs of our users
To reliably build software, Gradle wants two things–the software definition and build logic.

⬢ Software Definition - What needs to be built

○ Kind of software, languages, target platforms, dependencies

○ Lives in build files

○ Meant to be read and modified by Software Developers

⬢ Build Logic - How the software will be built

○ Capabilities, integrations, organizational requirements

○ Lives in plugins

○ Meant to be read and modified by Build Engineers

Goal of Declarative Gradle
Software Developers should not need to be Build Engineers too.

⬢ Separate software definition and build logic with a declarative DSL

⬢ Match the software definition to the software domain

⬢ Excellent Tooling and IDE Integration

Declarative Gradle
Assembling the pieces…

⬢ Convention plugins

⬢ High-level models

⬢ Kotlin DSL

How many convention plugins do you usually apply to a single project?

None?

Just one?

2-9?

10-50?

50+?

Mixed concerns
Convention plugins today mix two different user concerns.

plugins {
 id("java-library")
}

tasks {
 val mySpecialTask by registering {
 ...
 }
}

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

dependencies {
 implementation("org.apache.commons:commons-text:1.11.0")
}

Software Developer concerns
Software Developers care about some of this…

plugins {
 id("java-library")
}

tasks {
 val mySpecialTask by registering {
 ...
 }
}

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

dependencies {
 implementation("org.apache.commons:commons-text:1.11.0")
}

Build Engineer concerns
Build Engineers care some of these things too.

plugins {
 id("java-library")
}

tasks {
 val mySpecialTask by registering {
 ...
 }
}

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

dependencies {
 implementation("org.apache.commons:commons-text:1.11.0")
}

Shared location/Separate concerns
Encourages complexity. How could we split this?

⬢ Software Developers need to wade through unfamiliar things

⬢ Build Engineers need to maintain Software Developer things

Software definition
What needs to be built?

⬢ A software type is a high level model that a Software Developer can understand.

⬢ For example, a JVM application is a software type.

○ A Software Developer knows they want to "make a JVM application".

○ A Software Developer knows the minimum version of the JVM they want to use.

○ A Software Developer knows which dependencies they want to use.

⬢ A software type hides "low level" detail like tasks

Software types
Software Developers care about 100% of this.

// in project definition
// NOTE: No other top-level blocks are allowed

javaLibrary {
 javaVersion = 17

 dependencies {
 implementation("org.apache.commons:commons-text:1.11.0")
 }
}

Software types
Build Engineers care about under the hood…

⬢ Software types replace applying plugins in a project definition file

○ There's a single software type for each project

⬢ Think of these like project extensions

⬢ Gradle still uses build logic and plugins to transform the software type into work to be done

⬢ EAP3 has prototype plugins to demonstrate what this would look like (demo later)

Reusable configuration
Configuration that is Software Developer facing can be reused without knowing about Gradle plugins.

// in settings
defaults {
 javaLibrary {
 javaVersion = 17

 dependencies {
 implementation("org.apache.commons:commons-text:1.11.0")
 }
 }
}

// in project definition
javaLibrary {

}

Which DSL do you use today to define your builds?

Kotlin DSL?

Groovy DSL?

Declarative Gradle (DCL)?

Simplifying the software definition
Declarative Configuration Language (DCL)

⬢ Text-based, human readable

⬢ Document oriented

⬢ Highly toolable

javaLibrary {

 javaVersion = 17

 dependencies {
 implementation("...")
 }
}

Language highlights
DCL is a strict, tiny subset of Kotlin

⬢ Purely declarative

○ Simple assignments and nested blocks

⬢ Forbids "code" constructs in definition files

○ No imports, loops, functions, conditional statements

⬢ Fast and resilient parser

○ Parses even when there are errors

Language highlights (cont)
Borrows many patterns/ideas from existing DSLs

⬢ Supports simple property assignments

⬢ Supports creating elements in containers

⬢ Supports lists and file references

javaApplication {
 javaVersion = 17
 jvmArguments += listOf("-Xmx64m")
 checkstyle {
 configFile = layout.settingsDirectory.file("config/checkstyle.conf")
 }
}

Tooling
Tooling (like IDEs) can do some interesting things

⬢ Request project definitions without fully configuring the build

⬢ Validate project definition against schema

⬢ Request mutations to be made programmatically to the build definition

Disclaimer
These are all experiments and constantly changing/breaking.

⬢ Sample projects require Gradle milestones and unreleased features

⬢ Provided prototype plugins of Software Types are changing all the time and are not ready for

production use.

⬢ IDE features require Android Studio or IntelliJ nightlies

⬢ IDE support for DCL in IntelliJ IDEA

○ Also works in Android Studio and Visual Studio Code

⬢ Code completion is fast and concise

Demo - Recap

Which IDEs do you use most of the time?

IntelliJ IDEA?

Android Studio?

Visual Studio Code?

Eclipse?

Apache NetBeans?

Other?

⬢ No composability/extensibility for Software Types

○ Requires writing a new software type

■ Adding extra functionality to an existing software type

■ Applying a third party plugin

Limitations as of now

javaLibrary {
 // javaVersion is a built-in property of javaLibrary
 javaVersion = 17

 // checkstyle is an extension to javaLibrary
 checkstyle {
 toolVersion = "9.23"
 }
}

⬢ Missing support for model types

○ No FileCollection
■ Use ListProperty<RegularFile> or ListProperty<Directory>

instead

○ No Maps

■ Use NamedDomainObjectContainer<T> with simple objects instead

○ No PolymorphicDomainObjectContainer<T>
■ No replacement for this yet

Limitations as of now (cont)

Implementation Recap

⬢ Main principles

○ Reuse prototypes when modules are simple

○ Write Software custom types

⬢ Feasibility

○ If you can reuse our prototypes plugin, it’s easy

○ If you can’t but are used to write Gradle Plugins, it’s not that hard

⬢ Documentation

○ Guide https://declarative.gradle.org/docs/reference/migration-guide/

○ Case Study https://declarative.gradle.org/docs/reference/migration-case-study/

Implementation Recap

https://declarative.gradle.org/docs/reference/migration-guide/
https://declarative.gradle.org/docs/reference/migration-case-study/

How many software types do you think you'd have in your build?

Declarative build files
Without using Declarative Gradle

⬢ Create software type convention plugins

○ add a top-level extension

○ map that configuration to “usual” plugins

○ use Kotlin DSL

Declarative build files
Without using Declarative Gradle

⬢ No imperative logic in build files (not enforced)

⬢ Only requires one convention (aka software type) plugin applied

⬢ Only one top level block

Early Access Preview 3 out now
https://blog.gradle.org/declarative-gradle-april-2025-update

⬢ This post has videos highlighting some of the same features you've seen in the demos today.
⬢ Declarative Gradle can be used by early adopters for simple projects
⬢ Add support for testing to our prototype plugins
⬢ More DCL features to support the official Android Software Type

○ File and directory properties
○ List properties

⬢ Discovery work on the migration of existing builds

https://blog.gradle.org/declarative-gradle-april-2025-update

Challenges 🧯💨🔥
Gradle is flexible and extensible, but there were are drawbacks…

⬢ Build scripts are expressed in Gradle terms

○ Software types are simpler and in the domain of the Software Developer

⬢ Build scripts can become complex

○ DCL files cannot contain code or do things in multiple ways

⬢ Tooling/IDE can only help so much before it's just guessing

○ Automated tooling can programmatically edit/understand build definitions

Have you tried Declarative Gradle already?

Call-to-action: Give us feedback on EAP3
Submit feedback to https://declarative.gradle.org/docs/feedback/

⬢ Try out a sample, create a new build or even try migrating a build.
○ This is a chance to influence a new Gradle feature very early.

⬢ We're particularly interested in feedback from Software Developers
who do not know Gradle well.

⬢ You can also contact us on Slack and GitHub

https://declarative.gradle.org/docs/feedback/

Roadmap
We are starting up on EAP4. https://declarative.gradle.org/docs/ROADMAP/

⬢ Composability and extensibility prototypes

⬢ Migration to declarative Gradle

⬢ Backwards compatibility concerns

⬢ Expected Q3 2025

https://declarative.gradle.org/docs/ROADMAP/

Roadmap (cont)
When will this be incubating? https://declarative.gradle.org/docs/ROADMAP/

⬢ It depends…

○ On your feedback for EAP3 and EAP4

○ On making existing built-in plugins compatible

⬢ Would like to make this happen in 2025

⬢ Stable/GA would come later

○ Requires larger community feedback and adoption

https://declarative.gradle.org/docs/ROADMAP/

Team effort
We work on this together 🤝
https://kotlinfoundation.org/news/building-better-developer-experience/

⬢ Multiple teams at Gradle (DSL, Software, IDE)

⬢ Android Studio team at Google

⬢ IntelliJ & Kotlin teams at JetBrains

https://kotlinfoundation.org/news/building-better-developer-experience/

speaker {
 name = "Stefan Wolf"
 role = "Principal Software Engineer @ Gradle"
 github = "wolfs"
}

