ﬁGradle

Developer-First Gradle

Verstandliche Builds durch klare Trennung von
Zweck und imperativer Logik

Table of Contents

What is Gradle
Challenges

Vision & Principles
Building blocks

Declarative Gradle Early Access Preview 3
What now?

What'’s next in Declarative Gradle?

What is Gradle, really?

Gradle

BU\LBTOOL

ﬁ \DEV/—LOC\TY

Developer Productivity
Engineering (DPE)

accelerates
developer productivity

Gradle is the open source build system of choice for Java, Android, and Kotlin
developers. From mobile apps to microservices, from small startups to big
enterprises, it helps teams deliver better software, faster.

Get Started Guides

Build Anything Automate Everything Deliver Faster

*0) -
& o A A

. -

D>

e

-

4
c

.

0

TOP 3
DPE
METRICS

Developer Productivity
Engineering (DPE)
gradle.com/
developer-productivity-engineering

https://gradle.com/developer-productivity-engineering/
https://gradle.com/developer-productivity-engineering/

wEVELOCITY

(f.k.a. Gradle Enterprise)

Faster, more
reliable builds &

tests

Tired of waiting on slow builds and tests? Need instant
visibility to troubleshoot a failed build? Wish you could tell if
that test is actually flaky? Develocity can help.

https://gradle.com/develocity/

https://gradle.com/develocity/

\

Achieve software
delivery excellence
in the age of Al

ASK the audience

Who knows Gradle?
Who uses Gradle Build Tool?
Who knows Develocity / scans.gradle.com?
Who uses Develocity / scans.gradle.com?

Challenges

Challenges &

Gradle is flexible and extensible, but there are drawbacks...

@® Build scripts are expressed in Gradle terms
@® Build scripts can become complex

@® Tooling/IDE can only help so much before it's just guessing

Developer surveys say...

Gradle is used by a spectrum of roles.

@® Software Developers - Majority in most teams

o Improve software by shipping features & fixing bugs
@® Build Engineers - Frequent in larger teams

o Maintain the build and make Software Developers productive
® | < & -Frequentinsmallerteams

o Who's the Gradle expert today?

Ask the audience

Software Developer?
Build Engineer?
Both (at least 20% each)?

Challenges &

Software Developers need to think about Gradle plugins, tasks, and magic names to get their job
done.

plugins {
java

¥

repositories {
mavenCentral()

¥

dependencies {
testImplementation(libs.junit.jupiter)
testRuntimeOnly ("org.junit.platform:junit-platform-launcher")
api(libs.commons.math3)
implementation(libs.guava)

}

tasks.named<Test>("test") {
useJUnitPlatform()

}

Challenges ¢§

Complexity needs to be managed

plugins {
id ("my-conventions")
¥
apply { from("dependencies.gradle.kts") }
tasks.named<Test>("test") {
useJUnitPlatform()
jvmArgs "-Dsamples=${projectDir.absolutePath}/samples"

. 500 lines ...

tasks.named<Test>("test") {
useJUnitPlatform {
includeTags("Fast")
}

Challenges %<

How can automated tooling make sense of this?

android {
namespace = "com.example.${project.name}"
¥
dependencies {
testImplementation(libs.junit.jupiter)
testRuntimeOnly ("org.junit.platform:junit-platform-launcher")
if (!buildingForJaval7()) {
implementation(libs.javal7CompatibilityShim)
}
implementation(libs.guava)
listOf("foo", "bar").forEach { name ->
implementation("org:${name}:1.0")
}

}
fun buildingForJaval7() = JavaVersion.current() == JavaVersion.VERSION_17

Recommendations today

Gradle builds can look declarative to manage the challenges.

@® Give your convention plugins meaningful names so Software Developers understand what

they are
@® Keepcodein plugins to manage complexity
o For custom build logic
o For common defaults

@® Keep your build scripts simple - condition and loop free

Done?

This might not be enough.

plugins {
id("backend-library-conventions")

}

dependencies {
api(libs.commons.math3)
implementation(libs.guava)

Vision
& Principles

Vision
Elegant and extensible declarative build language that allows developers to describe any kind of software in
a clear and understandable way.

@ Extensible, flexible [4
@® Declarative (=:

@® Clear andunderstandable &=

Needs of our users

To reliably build software, Gradle wants two things-the software definition and build logic.

® Software Definition - What needs to be built
o Kind of software, languages, target platforms, dependencies
o Livesin build files
o Meant to be read and modified by Software Developers
@® Build Logic - How the software will be built
o Capabilities, integrations, organizational requirements
o Livesinplugins

o Meant to be read and modified by Build Engineers

Goal of Declarative Gradle

Software Developers should not need to be Build Engineers too.

@® Separate software definition and build logic with a declarative DSL
@® Matchthe software definition to the software domain

@® Excellent Tooling and IDE Integration

Building blocks

Declarative Gradle

Assembling the pieces...

@® Convention plugins
@® High-level models
@® Kotlin DSL

AsK the audience

How many convention plugins do you usually apply to a single project?
None?
Just one?
2-9?
10-507?
50+?

Mixed concerns

Convention plugins today mix two different user concerns.

plugins {
id("java-library")
}
tasks {
val mySpecialTask by registering {
}
}
java {
toolchain {
languageVersion = JavalanguageVersion.of (17)
}
}

dependencies {
implementation("org.apache.commons:commons-text:1.11.0")

}

Software Developer concerns

Software Developers care about some of this...

plugins {
id("java-library")
}
tasks {
val mySpecialTask by registering {
}
}
java {
toolchain {
languageVersion = JavalLanguageVersion.of (17)
}
}

dependencies {
implementation("org.apache.commons:commons—text:1.11.0")

}

Build Engineer concerns

Build Engineers care some of these things too.

plugins {
id("java-library")
}
tasks {
val mySpecialTask by registering {
}
}
java {
toolchain {
languageVersion = JavalLanguageVersion.of (17)
}
}

dependencies {
implementation("org.apache.commons:commons—text:1.11.0")

}

Shared location/Separate concerns

Encourages complexity. How could we split this?

@® Software Developers need to wade through unfamiliar things

@® Build Engineers need to maintain Software Developer things

Software definition

What needs to be built?

@® Asoftwaretypeis ahighlevel model that a Software Developer can understand.
@® Forexample, aJVM applicationis a software type.

o A Software Developer knows they want to "make a JVM application".
o A Software Developer knows the minimum version of the JVM they want to use.
o A Software Developer knows which dependencies they want to use.

@® Asoftware type hides "low level" detail like tasks

Software types

Software Developers care about 100% of this.

// in project definition
// NOTE: No other top-level blocks are allowed

javalLibrary {
javaVersion = 17

dependencies {
implementation("org.apache.commons:commons-text:1.11.0")

}

Software types

Build Engineers care about under the hood...

@® Software types replace applying plugins in a project definition file
o There's asingle software type for each project
@® Thinkof these like project extensions
@® Gradlesstill uses build logic and plugins to transform the software type into work to be done

@® EAPS3has prototype plugins to demonstrate what this would look like (demo later)

Reusable configuration

Configuration that is Software Developer facing can be reused without knowing about Gradle plugins.

// in settings
defaults {
javalLibrary {
javaVersion = 17

dependencies {
implementation("org.apache.commons:commons—-text:1.11.0")

}

// in project definition
javalLibrary {

}

AsK the audience

Which DSL do you use today to define your builds?
Kotlin DSL?
Groovy DSL?
Declarative Gradle (DCL)?

Simplifying the software definition

Declarative Configuration Language (DCL)

@® Text-based, humanreadable
@® Documentoriented

@® Highlytoolable

javalLibrary {
javaVersion = 17

dependencies {

implementation("..

}

.II)

Language highlights

DCL is a strict, tiny subset of Kotlin

@® Purelydeclarative

o Simple assignments and nested blocks
@® Forbids "code" constructs in definition files

o Noimports, loops, functions, conditional statements
@® Fastandresilient parser

o Parses even when there are errors

Language highlights (cont)

Borrows many patterns/ideas from existing DSLs

@® Supports simple property assignments
@® Supports creating elements in containers

@® Supports lists and file references

javaApplication {
javaVersion = 17
jvmArguments += LlistOf("-Xmx64m'")
checkstyle {

configFile = layout.settingsDirectory.file("config/checkstyle.conf")
}

Tooling

Tooling (like IDEs) can do some interesting things

@® Request project definitions without fully configuring the build
@® Validate project definition against schema

@® Request mutations to be made programmatically to the build definition

Early Access
Preview 3

Disclaimer

These are all experiments and constantly changing/breaking.

@® Sample projects require Gradle milestones and unreleased features

@® Provided prototype plugins of Software Types are changing all the time and are not ready for

production use.

@® IDE features require Android Studio or IntelliJ nightlies

IDE & Tooling Demo

Demo - Recap

@® |IDE supportfor DCLin IntelliJ IDEA
o Alsoworks in Android Studio and Visual Studio Code

@® Codecompletionisfast and concise

ASK the audience

Which IDEs do you use most of the time?
Intelli) IDEA?
Android Studio?
Visual Studio Code?
Eclipse?
Apache NetBeans?
Other?

Limitations as of now

@® Nocomposability/extensibility for Software Types
o Requires writing a new software type
m Adding extra functionality to an existing software type

m Applying a third party plugin

javalLibrary {
// javaVersion is a built-in property of javalLibrary
javaVersion = 17

// checkstyle is an extension to javalibrary
checkstyle {
toolVersion = "9,23"

}

Limitations as of now (cont)

@® Missing support for model types

o NoFileCollection
m UselistProperty<RegularFile>orListProperty<Directory>
instead
o No Maps
m UseNamedDomainObjectContainer<T> withsimple objectsinstead
o NoPolymorphicDomainObjectContainer<T>
m Noreplacement for this yet

Implementation Demo

public interface CustomDesktopComposeApplication { 11 usages A& Tom Tresansky
@Restricted 1 usage A& Tom Tresansky
Property<String> getGroup();

@Restricted 2 usages A& Tom Tresansky
Property<String> getVersion();

aNested 3 usages A& Tom Tresansky
KmpApplication getKotlinApplication();

@Configuring no usages A& Tom Tresansky
default void kotlinApplication(Action<? super KmpApplication> action) { action.execute(getKotlinApplication

()

aNested A& Tom Tresansky
Compose getCompose();

@Configuring A& Tom Tresansky
default void compose(Action<? super Compose> action) { action.execute(getCompose()); }

aNested 3 usages A& Tom Tresansky
SqlDelight getSqlDelight();

/h*
* Universal APIs that are available for all {acode dependencies} blocks.

*
* @apiNote This interface is intended to be used to mix-in DSL methods for {@code dependencies} blocks.
* @implSpec The default implementation of all methods should not be overridden.
* @implNote Changes to this interface may require changes to the
* {@link org.gradle.api.internal.artifacts.dsl.dependencies.DependenciesExtensionModule extension module for Groovy DSL} or
* {@link org.gradle.kotlin.dsl.DependenciesExtensions extension functions for Kotlin DSL}.
*
* @see Creating custom
dependencies blocks.
*
* gsince 7.6
*/
@SuppressWarnings("JavadocReference") A& Sterling Greene +2
public interface Dependencies {
Jr*
* A dependency factory is used to convert supported dependency notations into {@link org.gradle.api.artifacts.Dependency} instances.
*
* @return a dependency factory
* @implSpec Do not implement this method. Gradle generates the implementation automatically.

-+

Basic types of dependencies used by either an application or library, for
production or test code.

@SuppressWarnings("UnstableApiUsage")

public interface BasicDependencies extends Dependencies, PlatformDependencyModifiers {
DependencyCollector getImplementation();
DependencyCollector getRuntimeOnly();
DependencyCollector getCompileOnly();

public interface SqlDelight { 3 usages A& Tom Tresansky

NamedDomainObjectContainer<Database> getDatabases(); 2 usages A& Tom Tresansky
1 @

sqlDelight {
databases {
database("ApplicationDatabase") {
packageName = "org.gradle.client.core.database.sqldelight.generated"
verifyDefinitions = true
verifyMigrations = true
deriveSchemaFromMigrations = true
generateAsync = false

Implementation Recap

@® Mainprinciples

o Reuse prototypes when modules are simple

o Write Software custom types
@® Feasibility

o If you canreuse our prototypes plugin, it's easy

o If youcan't but are used to write Gradle Plugins, it’s not that hard
® Documentation

o Guide

o Case Study

https://declarative.gradle.org/docs/reference/migration-guide/
https://declarative.gradle.org/docs/reference/migration-case-study/

Ask the audience

How many software types do you think you'd have in your build?

What now?

Declarative build files

Without using Declarative Gradle

@® Createsoftware type convention plugins
o add atop-level extension
o map that configuration to “usual” plugins
o use Kotlin DSL

plugins { ol
id("org.gradle.client.softwaretype.desktop-compose-application")

}

desktopComposeApp {
group = "org.gradle.client”

// Version must be strictly x.y.z and > 1.0.0
// for native packaging to work across platforms
version = "1.1.3"

kotlinApplication {
dependencies {
implementation(platform("org.jetbrains.kotlin:kotlin-bom:2.0.21"))
implementation(platform("ore.ietbrains.kotlinx:kotlinx-coroutines-bom:1.8.1"))

ASuppressWarnings("UnstableApiUsage") no usages A& Tom Tresansky +1
public abstract class CustomDesktopComposeApplicationPlugin implements Plugin<Project> {
public static final String DESKTOP_COMPOSE_APP = "desktopComposeApp"; 1 usage

a0verride A& Tom Tresansky +1

public void apply(Project project) {
var projectDefinition = project.getObjects().newInstance(CustomDesktopComposeApplication.class);
project.getExtensions().add(CustomDesktopComposeApplication.class, DESKTOP_COMPOSE_APP,
projectDefinition);

wireKMPApplication(project, projectDefinition.getKotlinApplication());
project.getPluginManager().apply(pluginId: "org.jetbrains.kotlin.plugin.serialization");

sqlDelight {
databases {
create(name = "ApplicationDatabase") {
packageName = "org.gradle.client.core.database.sqldelight.generated”
verifyDefinitions = true
verifyMigrations = true
deriveSchemaFromMigrations = true
generateAsync = false

1

sqlDelight {
databases {
database("ApplicationDatabase") {
packageName = "org.gradle.client.core.database.sqldelight.generated"”
verifyDefinitions = true
verifyMigrations = true
deriveSchemaFromMigrations = true
generateAsync = false

Declarative build files

Without using Declarative Gradle

® Noimperative logicin build files (not enforced)
® Onlyrequires one convention (aka software type) plugin applied

@® Onlyonetop level block

What's next?

Early Access Preview 3 out now

https://blog.gradle.org/declarative-gradle-april-2025-update

This post has videos highlighting some of the same features you've seen in the demos today.
Declarative Gradle can be used by early adopters for simple projects
Add support for testing to our prototype plugins
More DCL features to support the official Android Software Type
o Fileand directory properties
o List properties
Discovery work on the migration of existing builds

https://blog.gradle.org/declarative-gradle-april-2025-update

Challenges & @ &

Gradle is flexible and extensible, but there were are drawbacks...

o Software types are simpler and in the domain of the Software Developer
b Buildserint I |
o DCL files cannot contain code or do things in multiple ways

Toofingd4DE bl b beforeitis :

o Automated tooling can programmatically edit/understand build definitions

Ask the audience

Have you tried Declarative Gradle already?

Call-to-action: Give us feedback on EAP3

Submit feedback to https://declarative.gradle.org/docs/feedback/

@® Tryoutasample, create anew build or even try migrating a build.
o Thisisachance to influence a new Gradle feature very early.
@® We'reparticularly interested in feedback from Software Developers
who do not know Gradle well.
@® Youcan also contact us on Slack and GitHub

https://declarative.gradle.org/docs/feedback/

Roadmap

We are starting up on EAP4. https://declarative.gradle.org/docs/ROADMAP/

Composability and extensibility prototypes
Migration to declarative Gradle

Backwards compatibility concerns
Expected Q3 2025

https://declarative.gradle.org/docs/ROADMAP/

Roadmap (cont)

When will this be incubating? https://declarative.gradle.org/docs/ROADMAP/

@® Itdepends...

o Onyour feedback for EAP3 and EAP4

o On making existing built-in plugins compatible
@® Would like to make this happenin 2025
® Stable/GA would come later

o Requires larger community feedback and adoption

https://declarative.gradle.org/docs/ROADMAP/

Team effort

We work on this together
https://kotlinfoundation.org/news/building-better-developer-experience/

@® Multiple teams at Gradle (DSL, Software, IDE)
@® Android Studio team at Google
@® IntelliJ & Kotlin teams at JetBrains

https://kotlinfoundation.org/news/building-better-developer-experience/

Thank you!

0 Gradle DEVELOCITY

by Gradle Inc.

Request a Guided
Develocity Trial

01 Install and configure

-2, 02 Connect your builds
I.ITI
1_L'-_"'|-.

[=]

03 Capture your current build data

D

gradle.com/trial

04 Optimize your build

05 Quantify improvements

06 Present final report

