
@nicolas_frankel

A practical introduction to Open 
Telemetry



@nicolas_frankel

n Monitoring
n Lots of people looking at 

screens
n Alerting

In the good old days…



@nicolas_frankel

Then systems became more distributed



@nicolas_frankel

“In distributed systems, observability is 
the ability to collect data about 
program execution, internal states of 
modules, and communication between 
components. To improve observability, 
software engineers use a wide range of 
logging and tracing techniques and 
tools.”

-- https://en.wikipedia.org/wiki/Event_monitoring

Observability



@nicolas_frankel

1. Metrics
2. Logging
3. Tracing

The 3 pillars of Observability



@nicolas_frankel

n System metrics
• CPU, memory, etc.

n Higher-level metrics
• Requests per second, HTTP 

status code, etc.

Metrics



@nicolas_frankel

n What to log
• Auto vs. manual
• Sensitive data

n Logging format
• Human readable vs. JSON

n Where to log
• Console vs. log files

n Logs aggregation FTW

Logging



@nicolas_frankel

n Get the log
• Scrape vs. Send

n Parse the log
• Structured vs. unstructured

n Store the log
n Search the log
n Display the log

Centralized logging systems



@nicolas_frankel

Some centralized logging systems



@nicolas_frankel

“In software engineering, 
tracing involves a specialized 
use of logging to record 
information about a program's 
execution. […] Tracing is a 
cross-cutting concern.”

-- https://en.wikipedia.org/wiki/Tracing_(software)

Tracing



@nicolas_frankel

“Set of techniques and tools 
that help follow a business 
request through multiple 
components across the 
network”

-- Me
(inspired by lots of others I don’t 

remember the name of)

Tracing



@nicolas_frankel

Tracing pioneers



@nicolas_frankel

“This specification defines standard HTTP 
headers and a value format to propagate 
context information that enables distributed 
tracing scenarios. The specification 
standardizes how context information is sent 
and modified between services. Context 
information uniquely identifies individual 
requests in a distributed system and also 
defines a means to add and propagate 
provider-specific context information.”

— https://www.w3.org/TR/trace-context/

The W3C Trace Context specification



@nicolas_frankel

n Trace: follows the path of a 
request that spans multiple 
components

n Span: bound to a single 
component and linked to 
another span by a child-
parent relationship

Base concepts



@nicolas_frankel



@nicolas_frankel

“OpenTelemetry is a collection of 
tools, APIs, and SDKs. Use it to 
instrument, generate, collect, and 
export telemetry data (metrics, 
logs, and traces) to help you 
analyze your software’s 
performance and behavior.”

-- https://opentelemetry.io/

OpenTelemetry



@nicolas_frankel

n Implements W3C Trace Context

n Merge of OpenTracing and 
OpenCensus

n CNCF project

n Apache v2 license

n 1.3k followers on GitHub

OpenTelemetry



@nicolas_frankel

OpenTelemetry architecture



@nicolas_frankel

n OTEL provides a collector
n Jaeger and Zipkin provide 

compatible collectors
• Continue using your existing 

tracing provider!

Life after the OTEL collector



@nicolas_frankel

n Auto-instrumentation
• Via the runtime

n Manual instrumentation
• Library dependency + API

Auto-instrumentation vs. manual instrumentation



@nicolas_frankel

n Low-hanging fruit
n No coupling

Benefits of auto-instrumentation



@nicolas_frankel



@nicolas_frankel

n The most important part as it 
generates the first ID
• Reverse proxy/API Gateway

The entrypoint



@nicolas_frankel

Apache APISIX, an API Gateway the Apache way



@nicolas_frankel

plugins:
- opentelemetry

plugin_attr:
opentelemetry:
resource:
service.name: APISIX

collector:
address: jaeger:4318

General configuration



@nicolas_frankel

plugins:
opentelemetry:
sampler:
name: always_on

additional_attributes:
- route_id
- request_method
- http_x-ot-key

Per-route (or global rule) configuration



@nicolas_frankel

n Via a Java agent:
•-javaagent:otel.jar

n Regardless of:
• The language
• The framework

JVM auto-instrumentation implementation



@nicolas_frankel

n Requires the OTEL dependency
n Usage:
• Annotations
• API call

JVM explicit instrumentation



@nicolas_frankel

Annotations

@WithSpan("ProductHandler.fetch")
private suspend fun fetchProductDetails(

@SpanAttribute("id") id: Long,
product: Product) {
// ...

}



@nicolas_frankel

n Add the OTEL dependency
n Run with the instrumentation:

>opentelemetry-instrument flask run

Python auto-instrumentation



@nicolas_frankel

Explicit API

from opentelemetry import trace

tracer = trace.get_tracer(__name__)

with tracer.start_as_current_span(
"SELECT * FROM PRICE WHERE ID=:id",
attributes={":id": 1}):
#do under the span



@nicolas_frankel

n Rust compiles to native:
• No runtime
• Needs explicit calls

Rust



@nicolas_frankel

Finding the relevant Cargo dependency

• It’s not trivial!

axum-tracing-opentelemetry = { version = 
"0.7", features = ["otlp"] }



@nicolas_frankel

n Initialize the library
n Configure axum
n Clean stop

Usage



@nicolas_frankel

Configure axum

let app = axum::Router::new()
.route("/stocks/:id", get(get_by_id))
.layer(response_with_trace_layer())
.layer(opentelemetry_tracing_layer());



@nicolas_frankel

Thanks for your attention!

n @nicolas_frankel
n @nico@frankel.ch
n https://bit.ly/otel-demo
n https://apisix.apache.org/


