
1

Just don’t do it!
Anti-Patterns in event-getriebenen Architekturen

Frank SteimleFlorian Pfleiderer

Photo by Bradyn Trollip on Unsplash

https://unsplash.com/@bradyn?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sequence?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

2

Details:
● Characteristics: Fails fast, simple, low latency
● Challenge: How to handle failures?
● Challenge: What happens if Service A does more requests than Service B can handle?
● Challenge: If services belong to different teams: who is responsible?

A Synchronous Example

Service A Service B
HTTP

3EDA Communication Patterns: Point-To-Point Connection & Pub/Sub

Service A Service B

Service A

Service B

Service C

Service D

Broker

4Characteristics of Event-Driven Architecture

Flexibility &
Scalability

Loose Coupling &
Resiliency

Eventual Consistency &
Developer’s Mind Set

Foto von Ilya Chunin auf Unsplash, Foto von Алекс Арцибашев auf Unsplash, Foto von Ocean Ng auf Unsplash

https://unsplash.com/de/@ilyachunin?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/ein-rotes-kreuz-auf-weissem-papier-NWAnvRx5x3o?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/@lxrcbsv?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/ein-balkendiagramm-wird-auf-blauem-hintergrund-angezeigt-vVHXeu0YNbk?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/@oceanng?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/runde-analoge-wanduhr-die-auf-1009-zeigt-L0xOtAnv94Y?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

5Anti-Pattern: Enforce Callbacks

Service A

Service B

Service C

Service D

Broker

6Common Event Types

Notification
Events

Event Carried
State Transfer

Event Sourcing
Events Delta Events

7Anti-Pattern: Big Ball Of Mud

?

8Governance in Event-Driven Architectures

Standards Control Access Discoverability

9Anti-Pattern: Everything is an Event

Service A

Service B

React!

10Command vs. Event

{
 “type”: “NewUserRegistered”,
 “mail”: “frank@dx.front”,
 “timestamp”: “2024-07-31”
}

{
 “type”: “RegisterNewUser”,
 “mail”: “frank@dx.front”,
}

Event

Command

User
ServiceUI

RegisterNewUser NewUserRegistered

11Anti-Pattern: Implicit Coupling

Service A Service B

Implicit Contract

12Contract Tests & Schema Registry

Contract Tests Schema Registry

SA SB

ExpectationsExpectations

Contract

TestsTests
SA SB

Validates message
against schema.

Schema

Validates message
against schema.

Schema/
Code
Bindings

Schema/
Code
Bindings

13Anti-Pattern: False trust in resiliency

Service A

Service B

Service C

Service B is
unavailable

Service C can’t
process the
latest event

?

X

14Handling Failing Event Delivery & Idempotency

Drop Events Dead Letter Queue Idempotency

Service Service Service
…

15Anti-Pattern: Everything Async

Shipment
Service

Order
Service

Request Queue

Response Queue

16Establish Common Architectural Vision

Language Goals Standards

17Anti-Pattern: Read your own writes

Service A Service B

Red?

18Eventual Consistency

Service A

Service B

X

Prefer availability over consistency

Service A Service B

Users Users
(Copy)

Will be updated eventually

Service B

Users
(Copy)

UI

Where do you really need
strict consistency?

19

● Typical journey:

○ Every team starts designing and publishing events

○ Infrastructural topics like topic design and standards for event metadata arise

○ How to handle event schema evolution?

○ Do we have a shared understanding of event-driven and its implications?

○ Why does event X not contain information Y?

Anti-Pattern: Implementation First

20

● Create common language
● Discuss and understand overall process
● Identify key events
● Establish: Discuss Requirements → Design Event → Implement

Events first!

21

● EDAs have many advantages: flexibility, scalability, loose coupling, availability, robustness

● Introducing and Evolving EDAs can be hard, due to
○ wrong event design
○ not leveraging event data
○ not existing governance concepts, i.e. discoverability
○ not defining what happens on event delivery failures
○ not ensuring ability to evolve cent schemas
○ lack of common understanding of the architectural style
○ prioritizing implementation over understanding

● Biggest anti-pattern: lack of communication!

Conclusion

22Q&A

Just don’t do it!
Anti-Patterns in Event-getriebenen Architekturen

Florian Pfleiderer

florian.pfleiderer@digitalfrontiers.de
https://www.linkedin.com/in/pfleidfn/

Frank Steimle

frank.steimle@digitalfrontiers.de
https://www.linkedin.com/in/frank-steimle/

https://github.com/dxfrontiers

https://blog.digitalfrontiers.de

@dxfrontiers

https://github.com/dxfrontiers
https://blog.digitalfrontiers.de

