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Just don’t do it!
Anti-Patterns in event-getriebenen Architekturen

Frank SteimleFlorian Pfleiderer
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Details:
● Characteristics: Fails fast, simple, low latency
● Challenge: How to handle failures? 
● Challenge: What happens if Service A does more requests than Service B can handle?
● Challenge: If services belong to different teams: who is responsible?

A Synchronous Example

Service A Service B
HTTP



3EDA Communication Patterns: Point-To-Point Connection & Pub/Sub

Service A Service B

Service A

Service B

Service C

Service D

Broker



4Characteristics of Event-Driven Architecture

Flexibility & 
Scalability

Loose Coupling & 
Resiliency

Eventual Consistency & 
Developer’s Mind Set
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5Anti-Pattern: Enforce Callbacks

Service A

Service B

Service C

Service D

Broker



6Common Event Types

Notification 
Events

Event Carried 
State Transfer

Event Sourcing 
Events Delta Events



7Anti-Pattern: Big Ball Of Mud

?



8Governance in Event-Driven Architectures

Standards Control Access Discoverability



9Anti-Pattern: Everything is an Event

Service A

Service B

React!



10Command vs. Event

{
  “type”: “NewUserRegistered”,
  “mail”: “frank@dx.front”,
  “timestamp”: “2024-07-31” 
}

{
  “type”: “RegisterNewUser”,
  “mail”: “frank@dx.front”,
}

Event

Command

User 
ServiceUI

RegisterNewUser NewUserRegistered



11Anti-Pattern: Implicit Coupling

Service A Service B

Implicit Contract



12Contract Tests & Schema Registry

Contract Tests Schema Registry

SA SB

ExpectationsExpectations

Contract

TestsTests
SA SB

Validates message 
against schema.

Schema

Validates message 
against schema.

Schema/ 
Code 
Bindings

Schema/ 
Code 
Bindings



13Anti-Pattern: False trust in resiliency  

Service A

Service B

Service C

Service B is 
unavailable

Service C can’t 
process the 
latest event

?

X



14Handling Failing Event Delivery & Idempotency

Drop Events Dead Letter Queue Idempotency

Service Service Service
…



15Anti-Pattern: Everything Async

Shipment 
Service

Order 
Service

Request Queue

Response Queue



16Establish Common Architectural Vision

Language Goals Standards



17Anti-Pattern: Read your own writes

Service A Service B

Red?



18Eventual Consistency

Service A

Service B

X

Prefer availability over consistency

Service A Service B

Users Users 
(Copy)

Will be updated eventually

Service B

Users 
(Copy)

UI

Where do you really need 
strict consistency?
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● Typical journey:

○ Every team starts designing and publishing events

○ Infrastructural topics like topic design and standards for event metadata arise

○ How to handle event schema evolution?

○ Do we have a shared understanding of event-driven and its implications?

○ Why does event X not contain information Y?

Anti-Pattern: Implementation First
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● Create common language
● Discuss and understand overall process
● Identify key events
● Establish: Discuss Requirements → Design Event → Implement

Events first!
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● EDAs have many advantages: flexibility, scalability, loose coupling, availability, robustness
 

● Introducing and Evolving EDAs can be hard, due to
○ wrong event design
○ not leveraging event data
○ not existing governance concepts, i.e. discoverability
○ not defining what happens on event delivery failures
○ not ensuring ability to evolve cent schemas
○ lack of common understanding of the architectural style
○ prioritizing implementation over understanding

 
● Biggest anti-pattern: lack of communication!

Conclusion
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