Work{low Automation
Reinvented

What people think, when | say ,Workflow Automation®...

%% Camunda Tasklist

<> 2

~

Prepare Bank Transfer

My Group Tasks s Invoice Receipt

&.in 21 hours x
nting

Form

What | think, when | say ,Worktlow Automation”

@berndruecker

What people think, when [say ,BPM“...

Low-code i§ great!
(You can get rid
of your developers!)

S

Death bg properties panel

What | think, when I say , BPM”

Software Development
Architecture and Design 2019 Q1 Graph

http://infog.link/architecture-trends-2019

Blockchain and
Distributed Ledgers

Service meshes
(Envoy, Linkerd, Istio)

HTTP/3

Reactive Programming

Functional
Programming

CQRS
Actor Model

"Serverless" (FaaS/
BaaS/DBaaS/PaaS)

gRPC and HTTP/2
GraphQL

(Lightweight) workflow
and decision
automation platforms

distributed systems

"Architect as technical
leader"

Event-Driven
Architecture (and Event
Sourcing)

Eventual Consistency

Microservices

Domain-Driven
Design

Behaviour-Driven
Design

Test-Driven Design

REST

THENEWSTACK

Ebooks

Architecture

5 Workflow Automation Use Cases
You Might Not Have Considered

w
| HHHH‘!H

https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

Use cases {ov wovk{low automation

<= milliseconds minutes, weeks, ...

Use cases {ov wovk{low automation

Business processes

automation

<= milliseconds minutes, weeks, ...

Use cases {ov wovk{low automation

Business processes

automation

<= milliseconds minutes, weeks, ...

Use cases {ov work{low automation

Business processes

l automation

<= milliseconds minutes, weeks, ...

Software Development
Architecture and Design 2019 Q1 Graph

http://infog.link/architecture-trends-2019

Reactive Programming

Functional
Programming

CQRS
Actor Model

"Serverless" (FaaS/
BaaS/DBaaS/PaaS)

gRPC and HTTP/2
GraphQL
Evolutionary

Architecture ’ ’ ’ Microservices
(Lightweight) workflow ”

and decision L
Blockchain and iagplatforms Design

Distributed Ledgers Correctly built Evenht-Drien gizfgvr:our—Drlven

Service meshes distributed systems Architecture (and Event

(Envoy, Linkerd, Istio) Sourcing) Test-Driven Design

"Architect as technical
HTTP/3 leader" Eventual Consistency REST

Use cases {ov work{low automation

Business processes

l automation

(ommunication in

distributed Syﬂ’ems

<= milliseconds minutes, weeks, ...

Ever called a REST API?

~ T~ T~
S\ [4 Credit

REST \ Card J

/ Payment
\s -_ ~—_

Stateful retry

~ ~

l p, ment\—> Ngredit
N / Rest \ Card J
N ~

Stateful retry:
e.g. 10 times,

delay 15 min.

©

Charge credit
card

Distributed sys’rems introduce complexi’rg you havelto tackle!

~ =~

N redit N

! ResT) N _Cord /

/ Payment
\s — ~

It is impossible to
diflerentiate certain

{ailwe (CENAYI0S.

lu\o\e.p(amdo«udL o{

communication s+9le!

Client

Service
Provider

X

Distributed sys’rems introduce complexi’rg you havelto tackle!

~ =~

N redit N

! ResT) N _Cord /

/ Payment
\s — ~

Distributed sys’rems introduce complexi’rg you havelto tackle!

~ =~

N r.edit N

! ResT) N _Cord /

/ Payment
\s — ~

Bernd Ruecker

(o-founder and
Chie} Technoloqid’ of

(amunda

mail@berndruecker.io A H &
@berndruecker s one s

mailto:mail@berndruecker.io

sscomunda

Live hackivw)

https://github.com/berndruecker/flowing-retail/tree/master/rest/java/payment-camunda

Q&

https://github.com/berndruecker/flowing-retail-payment-rest-spring-statemachine

BPMN - Business Process Model and Notation Real-Life
IS0 Standard BPM

BPMN XML Work{low

emqime

+ (ode, VI, ...

eeeeeeeeeeeee

Lomq wmmiij services ¥

provide a better APII

@berndruecker

Example
Retrieve
- = \ Payment RN
(Order / Payment
/ \ /

\—’ _’

@berndruecker

Example
Ke’(rieve
-~ N ~- ~ > -~ =
(Order) Pogrect / Payment\ (Credit >
J \ ! < \ Card /

N o -~ ~

@berndruecker

Example
Ke’(rieve
-~ N ~- ~ > -~ =
(Order) Pogrect / Payment\ (Credit >
J \ ! < \ Card /

N o -~ ~ -

Kejed’ed

@berndruecker

Example

Retrieve
Payment TN —, =

N
Order I Payment f Credit

I ¢ \ Card J
— a Yed ~ ~ e
K"—)"—(e _ If the credit
Ke}"'ded card was

rejected, the

customer can
< provide new
details

@berndruecker

Example

- Retrieve
Payment TN — =

it N
Order I Payment (Credit

- I ¢ \ \Card _ J
~ Ke)ede"\ - . - If the credit
Ke)eded card was

rejected, the

customer can
< provide new
details

Client of dumb endpoints easily become a god services.

@berndruecker

Who i§ responsible to deal with problems?

N —_—
[4 Credit

J < Card /
\ -

~ -
. If the credit
Rejected card was
rejected, the
customer can

provide new
details

AlA

@berndruecker

Lonq mmmimq (ervice$

Retrieve
Payment

-
ﬁ’

it N\
(Order I Payment f Credit
< \ Card J
N - , ~= ~_

o
/N

Smart endpoints are
potentially long-running

@berndruecker

Lomq Vuvw\imq (ervice$

Retrieve
— — [
(’o d h et Credit M
~ raer ’ h \ Card ’
_ ’

Charge credit
card

Payment
received

Rejected

koo =

Inform customer Wait for cutomer
of rejection to update card

Payment
failed

Use cases {ov work{low automation

Business

Business processes
automation

T (ommunication in

distributed Syﬂ’ems

<= milliseconds minutes, weeks, ...

always short running short running, but long rumning
potentially long running

Use cases {or work{low automation

Business

Business processes
automation

T (ommunication in

distributed Syﬂ’ems

<= milliseconds minutes, weeks, ...

always short running short running, but long running
potentially long running

Use cases {ov wovk{low automation

Business

Business processes
automation

T Commun... .

distributed Syﬂ’ems

<= milliseconds minutes, weeks, ...

always short running short running, but long running
potentially long running

Microservices...

-

Monolith

Functionality

A Functionality

B

Functionality
D

Functionality

\ C

~

v

~- ~
[Service N S
N A 7 ’S RN
~ A /4 ervice
~
-~ — oy P -— o,
(Service N (Service M
B J D /)
~ -~
f Some N — -
Service /J -~ _
A ~ - [Some N - ~ N
\ Service / f Some
~ \, Service J
~

@berndruecker

order fulfillment
example:

dash button

https://www.flickr.com/photos/0xf2/29873149904/
https://creativecommons.org/licenses/by-nd/2.0/
https://www.flickr.com/photos/0xf2/29873149904/

(Micro-)services

-~ N
(Checkout\
V4

N o

-~
- \

/ Payment) -7~

~ —_ (Inventory

~ -

[
\

~T~

Shipment

~

-

4

@berndruecker

@berndruecker

Event-driven architecture

-~ N
(Checkout) order
N - Placed IR A B G
Pawen’f ___,(Notification M
Received ~ -~ -
Goods
-~ I’—\\ Fetched
[4 Payment J ™~ \ Shipmentl
~ (Inventory S -
~ .-

Peev—{’o—Peer event chains

order
placed

7z~ ~
(’C:heckout \
~ /

@berndruecker

@berndruecker

Peer—{'o—Peer event chains

order
placed
e ™ ~
F’
~

Checkout \

-_—

-~ ~
Inventory
w /

@berndruecker

The danger is that it's very easy fo make
nicely decoupled systems with event
notification, without realizing that you're
loging Sight of that larger-scale tHow, and
thus set yourself up for trouble in future

9ea¥$-

https://martinfowler.com/articles/201701-event-driven.html

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing Sight of that larger-scale fHow, and
thus set yourself up for trouble in future

9ea¥$-

https://martinfowler.com/articles/201701-event-driven.html

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
loging Sight of that larger-scale tHow, and
thus set yourself up for trouble in future

9eav8-

https://martinfowler.com/articles/201701-event-driven.html

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

Peer—to-peer event chaing Fetch the goods

Ol I before the

payment

-~

heckout

@berndruecker

Peer—to-peer event chaing Fetch the goods

Ol I before the

payment

(f’ T
Checkout)
N P, = (7
, Cae ¥
& DT
— —) -~ ‘..“‘
- —y
N\ (Shipment

; -
\P:'yment ; - \\ _‘J/
/

received

@berndruecker

- <l -

What we wanted

,
0 b >
RS = ¥
_f
Al
yE 2

il

1 -

L =

Photo by Lijian Zhang, available under Creative Commons SA 2.0 License and Pedobear19 / CC BY-SA 4.0

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Moshing_BMTH_RAL_2013.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Extract the end-to-end resPomsibilﬂy

order
placed

’ |
(Checkout

N o

TN
Order \

v 4
Retrieve
payment
e
Payment (Shipment\
/
received) W

@berndruecker

*Commands have an intent about
what needs to happen in the future

It shill can be messaging/

order

(’ R placed
Checkout TN
N — - &h Order)

Retrieve
bayment

-~

(

™~ \ Shipment

(Inventory\ S —-

4

~ -

@berndruecker

@berndruecker

-

”~
[Checkout] PR

~ = f Order J]
\

-~ —

/——'\ ’_-.\
’Shiment

(Payment) /""""\ N p /‘
o

S =7 I \nventory]
”

S

@berndruecker

No BPM(N) monoliths

Payment

Inventory

https.//blog.bernd-ruecker.com/avoiding-the-bpm-monolith-when-using-bounded-contexts-d86be6308d8

https://blog.bernd-ruecker.com/avoiding-the-bpm-monolith-when-using-bounded-contexts-d86be6308d8

@berndruecker

Work{lows imlmen’(statelul orcke’fm’(iom logic

-

”~
[Checkout] PR

~ = f Order J]
\

-~ —

-
- — ”

(Payment) P -...\ \Shlpment‘

S =7 I \nventory] -~

”

S

Use cases {ov wovk{low automation

Business

Business processes
automation

T Commun... .

distributed Syﬂ’ems

<= milliseconds minutes, weeks, ...

always short running short running, but long running
potentially long running

Use cases {ov work{low automation

Business

(onsis{'ency

Business processes
automation

T (ommun

distributed pttond

<= milliseconds minutes, weeks, ...

always short running short running, but long running
potentially long running

The classical example

3.

2.
> book > > book > book
- hotel car light
book
trip Failure!

@berndruecker

Life beyond Distributed Transactions:
an Apostate’s Opinion
Position Paper

Pat Helland

Amazon.Com
705 Fifth Ave South
Seattle, WA 98104

U

SA
PHeHand@Amazon.com

The positions expressed in this paper are

Instead, applications are built using different
personal opinions and do not in any way reflect techniques which do pot provide the same

the positions of my employer Amazon com, transactional guarantees but stil] meet the needs

Pat Helland ABSTRACT o g

This paper explores and names some of the

] ork have beeq in, . practical appmaches_. used_i.pthe i.qun_lelr;eurar_ions

Many decade_s o_f work have een ml-es_ted n _'hf‘ of large-scale fussion-critical applications in 5

Distributed Sys{—ems Guru area C;f d15]1;11buted transactions dmclu#._img world which rejects distributed transactions. We

! protocols such as 2PC. Paxos, an varions discuss the management of fine-grained pi f

; ; : anag 013 pieces o

Worked at Amazon, approaches to quorum. These protocols provide application data which may be repartitioned over

the-_ app Il(_‘:i_tlon programmer a faf;ade of global time as the application grows. We also discuss

Ml(YOSO{'+ & Sa(es{»ol'(e sertalizability. Personally, T have 1nvested a non- the design patterns used in sending messages
trivial portion of 01y career as a strong advocate between thege rapmmttimmate] « e 2

for the implementation and nce oFf mlaifai

@berndruecker

"

Grown-Ups Don't Use
Distributed Transactions

} Do A
"\ | + All (0] 4
nothing
Pod' Hellamo\ Do B
Distributed §ystems Guru
Worked at Amazon,

Microso]H’ % Sales{orce
—

The classical example

5 Saga

2.
book book book
- hotel car light

book

h"P cancel cancel Failure
hotel

Wq@rwmmmdwm

§aga Pattern
BPMN (implemented by BPMN compensation)

© © o

Cancel car : Cancel hotel el Cancel flight

<« <K <«

https://github.com/berndruecker/trip-booking-saga-java

https://github.com/berndruecker/trip-booking-saga-java

Use cases {ov work{low automation

Business

Distributed

Transactions

Business processes
automation

T (omimunication in

distributed sys’rew\s

<= milliseconds minutes, weeks, ...

always short running short running, but long running
potentially long running

Use cases {ov work{low automation

) Decision
Business

Automation

Distributed

_ Business processes
Transactions P

automation

T (omimunication in

distributed Syﬂ’ems

<= milliseconds minutes, weeks, ...

always short running short running, but long running
potentially long running

Decisions with DMN

= = =
. X pos Deliver policy H Send poliey }—»O
fﬂ L
§ - - : De:‘!detgg W Dedision?
Risk Assessment
c Input Output
]
Car manufacturer =) . olcy Send ejection
Age =37 Car type =911 Risk Risk assesment .
Porsche e
Annotation
1]<=21 - - "Beginner" "yellow"
No sorry - that's too
2| <=25 "Porsche" - "Young and too fast" | "red" . y
risky!
31<=30 "BMW" - "Young and fast" "yellow"
" " A "Fast and furious" = " "
4 Porsche 911 Fast and furious vellow" = yellow
5 "BMW" "X3" "High value vehicle" | "yellow"

Lost in transaction? Strategies to
manage consistency in
distributed systems

You probably work on a distributed system. Even if you
don't yet face a serverless microservice architecture using
fancy NoSQL databases, you might simply call some remote
services via REST or SOAP. This leaves you in charge of
dealing with consistency yourself.

Lost in transaction?

H’m{’eqiex to deal with
(in)comsistency in distributed systems

Dberndruecker

~

3 common pitfalls in microservice
integration and how to avoid
them

Integrating microservices and taming distributed systems
is hard. In this talk | will present three challenges I've
observed in real-life projects and discuss how to avoid
them. | will not only use slides but also demonstrate
concrete source code examples available on GitHub.

3 Common Pitfalls in
Microservice In{’eqm{’ion and

How to Avoid Them

Dberndruecker

-~

Complex event flows in
distributed systems

Event-driven architectures enable nicely decoupled
microservices and are fundamental for decentral data
management. However, using peer-to-peer event chains to
implement complex end-to-end logic crossing service
boundaries can accidentally increase coupling

(omplex event flows in

distributed syd‘ems

Dberndruecker

~

http://berndruecker.io/

Work{low Automation is important in modern architectures!

@berndruecker

Microservices...

N
Monalith N AL seniae
- c
Ll What we wanted
P PR
Service service
Functionality [s 1
4 ‘mlw ‘ N~ N -
8
~—— =~
Functionali Some
o o \ Service [/ S"' = -
- ome
T, == Service /| Seme
Functionality N «, Service /
B -

Photo by Lijian Zhang, i unﬁer Creative Commons SA 2.0 License and Pedobear19/ CCBY-SA4.0

@berndruecker
i
Grown-Ups Don't Use
Distributed Transactions
"
— ‘ + - Au or
nothing

Pat Helland
Fikributed Syibered Gurw
worked ot Amazon,
Microsodt & Saleforse §

Thoughts on the state machine | work{low engine market

Thoughts on the state machine | work{low engine market

(tack Vendors,

Pure Play BPMS
Low (ode Platforms

PEGA, IBM, SAG, ...

Homegrown {mmewovks

to scratch an itch
Vber, Netflix, AirBnb, ING, ...

(amunda, Zeebe, JBPM,
Activiti, Flowable, Mistral, ...
of§ Workflow or Integration Frameworks
orchestration Engines
Apache (amel,
Balerina, ..
Data
(loud O{-{-evinqs Pipelines
Apache Airflow,
§pring Data Flow, ...

AWS Step Functions,

Azure Durable Functions, ...

Does it support stateful operations?
{Does it support the necessary How logic?
BVN‘N Does it support BizDevops?

Does it scale?

"name": "kitchensink",
"description": "kitchensink workflow",
"version": 1,
"tasks": [
{

"name": "task_1",
NETFLIX "taskReferenceName": "task 1",

"inputParameters": {
"mod": "${workflow.input.mod}",
"oddEven": "${workflow.input.oddEven}"

": "SIMPLE"

"name": "event_task",
"taskReferenceName": "event_8",
"inputParameters": {
"mod": "${workflow.input.mod}",
"oddEven": "${workflow.input.oddEven}"
¥
"type": "EVENT",
"sink": "conductor"

"name": "dyntask",
"taskReferenceName": "task_ 2",
"inputParameters": {

"taskToExecute": "${workflow.input.task2Name}"
}J
"type": "DYNAMIC",
"dynamicTaskNameParam": "“taskToExecute"

https://netflix.

https://netflix.github.io/conductor/metadata/kitchensink/

AWS Step Functions | | ZStlartf

BookHotel i

,,,,, O

' BookFlight

BookRental

https://read.acloud.guru/how-the-saga-pattern-manages-failures-witls-Ida-‘ S
step-functions-bc8f7129f900

https://read.acloud.guru/how-the-saga-pattern-manages-failures-with-aws-lambda-and-step-functions-bc8f7129f900

Flow language is important!
Think of more complica’(eo\ (CENAYIOS...

Credit
available

Check

Charge credit
customers

card
balance

Payment

failed
©

Deduct charge Ask customer to
from credit update card

Payment fully Payment

received (by

2
covered existing credit)

{6
fund charge

to customers

balance

‘.
Remind
customer to

update card

Payment
received

Payment aborted

Reminder sent

Proper
Opemﬁoms

Visibility + (ontext

Does nothing in
this demo!

Deduct existing)
customer credit

Restore
customer credit

<«

%2 Camunda COCkpit Processes Decisions Cases Human Tasks

Dashboard » Processes » paymentV5 : Runtime | History

Definition Version:
2w
Version Tag:
Definition ID:
paymentv5:2 45aea
Definition Key:
paymentvs
Definition Name:
null Payment retrieval
History Time To Live: requested
null

Tenant ID:

Always this way
in the demo!

@

y Charge credit
N card

= ’;_f‘ Credit card P31

aymen!

corﬁplete’ charged

Credit card
failed

r‘.gi\ customer to

update credit
card

e

Deduct existing
customer credit

= Wait for
customer to
update credit
card

Payment failed

2 Demo Demo

Payment
complete?

ons

Modify

@

Charge credit
card

Payment received

Start Time Business Key
-02-26T10:40:59
-26T710:40:18
-

camunda BPM / v7 8

@berndruecker

: impvove impyove

Biz Dev Ops

n
L]
n

L] . . |]
* communication .

communication .
® . .
a

. -

Understand and discuss Leverage operate with visibility
business processes state machine & and context
workflow engine
Evaluate optimizations

in-fync with Living
implementation documentation
ViSibilH’y n

’red’ing

@berndruecker

Example: S{’omge

52 COMunda

Persistent

(tate

[Toms |

28. Persisting State Machine

Traditionally an instance of a state machine is used as is within a running program.

28.2 Using StateMachinePersister

Building a StateMachineContext and then restoring a state machine from it has always been a little bit of a black magic if di
StateMachinePersister aims to ease these operations by providing persist and restore methods. Default implementation ¢

DefaultStateMachinePersister

Usage of a StateMachinePersister is easy to demonstrate by following a snippets from tests. We start by creating to two ¢
machinel and machine2 . We could build different machines for this demonstration using various other ways but this serves

static class InMemoryStateMachinePersist implements StateMachinePersist<String, String, String> {

private final HashMap<String, StateMachineContext<String, String>> contexts = new HashMap<>();

public void write(StateMachineContext<String, String> context, String contextObj) throws Exception {
contexts.put(contextObj, context);

public StateMachineContext<String, String»> read(String contextObj) throws Exception {
return contexts.get(contextObj);

¥

Source: Spring StateMachine docs

Chapter 35,
Chapter 36,
Chapter 37,
Chapter 38,
Chapter 39,
Chapter 40,
Chapter 41,
Chapter 42,
Chapter 43,
Chapter 44,
Chapter 45,
Chapter 46,
Chapter 47,
Chapter 48,

Chapter 49,

Turnstile Turnstile.
Showcase Showcase.

CD Player CD Player.

Tasks Tasks.

Washer Washer.

Persist Persist.

Zookeeper Zookeeper.

Web Web.

Scope Scope.

Security Security.

Event Service Event Service.
Deploy Deploy.

Order Shipping Order Shipping.
JPA Config JPA Config.

Monitoring Monitoring.

Example: S{’omqe

52 COMunda - zeebe

Persistent J- Persistent
(tate :".I.lt

chanqe

[T om | — o
yourself L

Wovk{—low automation at scalel

What we cwrevd’ly teach

work{low automation
to be able to do What people think workflow

automation can do

D e EEEE—

low latency, low {requency,

hiqk-{'hvoughpud’ la’(ency doesn't matter

Events written/s Apache Kafka vs. Zeebe

Why Zeebe?

300000

Hovizon’mlly calable and

resilient

Events/s

150000

100000

Workflow Instances Started / Second Zee be

LA e
12 3 a5

L B B
6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Time

second

Instances Staried /

190000

Mumber of Brokers

zeebe

What is Zeebe? Docs FAQs Blog GitHub

=S0E hesources > 'How Does Zeebe Compare to X7

An Evaluation Framewori

'How Does Zeehe Compare to
X?': An Evaluation Framework

We often get questions about how 7

and frameworks that can he

open-source BPMN workflow engine

Wh open-saurce orc (such as Netflix Conductor and Uber

cloud providers (such as AWS Step Functions and

Distributed trac ing t (such as Jae

o]
&

' ion-criteria/
https://zeebe.io/blog/2019/03/zeebe-comparison-evaluation-cr

https://zeebe.io/blog/2019/03/zeebe-comparison-evaluation-criteria/

AsPed's to consider

Camunda Spring State Machine
Workflow Definition NN : P————

Visual?

Tooling

Storage Runtime
Storage History
Scalability

Fault tolerance

Supported programming
languages

My personal pro-tip for a shortlist ;-)

(amunda & Zeebe

e ———
— - (=
l§

Thank you! —

Contact: mail@berndruecker.io
@berndruecker

Slides: https://berndruecker.io

Blog: https://medium.com/berndruecker

Code: https://github.com/berndruecker

https://www.infoworld.com/article/3254777/
I-nfowo-r'ld application-development/
3-common-pitfalls-of-microservices-

integrationand-how-to-avoid-them.html

v https://www.infog.com/articles/events-
n o > workflow-automation

https://thenewstack.io/5-workflow-automation-
THENEWSTACK use-cases-you-might-not-have-considered/

mailto:mail@berndruecker.io
https://berndruecker.io/
https://medium.com/berndruecker
https://github.com/berndruecker
https://www.infoq.com/articles/events-workflow-automation
https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

