
Schnelle und wartbare Builds
 für Projekte jeder Größenordnung

Stefan Wolf
JavaForum Stuttgart 2023

About me

Stefan Wolf

Principal Engineer @ Gradle

GitHub @wolfs

https://gradle.com/
https://github.com/wolfs

What is Gradle

Gradle Inc.

https://gradle.org/
https://gradle.com/

Gradle Build Tool is an open-source build system that
automates the process of building software of any type, size, or
complexity in a fast and reliable manner. What sets Gradle
Build Tool apart is its elegant and extensible declarative build
language that enables expressing any build in a clear and
understandable way.

Software build tool released under the Apache License

It is one of the 20 most popular open source projects

according to TechCrunch with nearly 30 million monthly

downloads.

https://github.com/gradle/gradle/blob/master/LICENSE
https://techcrunch.com/2017/04/07/tracking-the-explosive-growth-of-open-source-software/

Gradle Enterprise

Table of Contents

Fundamentals

Test suites

Convention plugins

Performance

Fundamentals

Gradle Init

❯ gradle init

❯ gradle init --dsl kotlin --incubating \

 --type java-application --test-framework junit-jupiter \

 --package org.example --project-name my-project

⬢ Create a project via an interactive dialog

⬢ Allows to configure

○ Project template

○ Test framework

○ Gradle setup

Project anatomy

Project anatomy

Gradle Wrapper

⬢ Ties the project to a Gradle version

⬢ Downloads Gradle distribution

⬢ Allows upgrading Gradle in the project

❯ ./gradlew wrapper --gradle-version 8.2

Project anatomy

rootProject.name = "my-project"

include("app")

Build settings

Project anatomy

plugins {
 application
}

repositories {
 mavenCentral()
}

dependencies {
 =/ ==.
}

application {
 mainClass = "my.App"
}

Build script

Ready for development

❯ ./gradlew classes

❯ ./gradlew check

❯ ./gradlew build

Compile sources

Execute tests

Build full project

Test Suites

Testing a project

⬢ Unit tests

⬢ Integration tests

⬢ End-to-end tests

⬢ Performance tests

⬢ …

Works out-of-the-box,
but requires dependencies

Could live with unit tests
but would run even if those fail

Live in separate non-test project
or require manual source sets setup

Test Suites
build.gradle.kts

testing {
 suites {
 val test by getting(JvmTestSuite-:class) {
 useJUnitJupiter()
 }
 }
}

Test Suites

testing {
 suites {
 val test by getting(JvmTestSuite-:class) {
 useJUnitJupiter()
 }

 register<JvmTestSuite>("integrationTest") {
 dependencies {
 implementation(project())
 }
 useJUnitJupiter("5.8.2")
 targets.all { testTask.configure { shouldRunAfter(test) } }
 }
 }
}

build.gradle.kts

Test Suites
build.gradle.kts

testing {
 suites {
 =/ ==.
 }
}

tasks.named("check") {
 dependsOn(testing.suites.named("integrationTest"))
}

❯ ./gradlew check
…
> Task :app:test
> Task :app:integrationTest
> Task :app:check
…

Convention Plugins

Multi-project build

Application 1 Application 2 Library 1

Multi-project build

Java Project

Java Application Java Library

Application 1 Application 2 Library 1

intuition

code

Multi-project build

Java Project

Java Application Java Library

Application 1 Application 2 Library 1

code

Convention Plugins

Application 1 Application 2 Library 1

code

my.java-application.gradle.kts my.java-library.gradle.kts

my.java-project.gradle.kts

Build Logic Subproject

Build Logic Subproject

Extracting Build Logic

plugins {
 `java-base`
}

repositories {
 mavenCentral()
}

java {
 toolchain { =* ==. =/ }
}

testing {
 suites { =* ==. =/ }
}

plugins {
 id("my.java-project")
 application
}

my.java-application.gradle.ktsmy.java-project.gradle.kts

Build Logic Subproject

Extracting Build Logic

rootProject.name = "build-logic" plugins {
 `kotlin-dsl`
}

repositories {
 mavenCentral()
 gradlePluginPortal()
}

build-logic/build.gradle.ktsbuild-logic/settings.gradle.kts

Including build logic

rootProject.name = "monorepo"

includeBuild("build-logic")

include("app1", "app2", "lib1")

plugins {
 id("my.java-application")
}

dependencies {
 =/ ==.
}

application {
 mainClass = "my.App1"
}

settings.gradle.kts app1/build.gradle.kts

Convention plugins

⬢ Orchestrate applied plugins

⬢ Configure defaults for you, your project, your company

⬢ Inside the project or published

Composite Builds

⬢ Library changes are available directly in your project

without local publishing

⬢ Including library as a temporary Gradle module in IDE provides

cross-project navigation and refactorings

⬢ Works via dependency substitution and

supports substitution overrides

includeBuild("/path/to/lib/from/another/repo")

Performance

Anti-performance

https://xkcd.com/303/

https://xkcd.com/303/

Anti-performance

https://xkcd.com/303/

https://xkcd.com/303/

Performance Improvements

⬢ Don’t do the same work again –

work avoidance: incremental build/incremental tasks/caching

⬢ Use more resources to do the work faster –

run in parallel

:compileJava :compileTestJava

Gradle Tasks

inputs actions outputs

��

:compileJava

���� 💻

:compileTestJava

Gradle Tasks

⏱

��

�� 💻

:compileJava :compileTestJava

Incremental Build

��

�� 💻

UP-TO-DATE

changed outputschanged inputs same inputs same outputs

:compileJava :compileTestJava

Build Cache

��

�� 💻

UP-TO-DATE

FROM-CACHE

Build Cache

Build Cache

⬢ Enable for single build invocation with --build-cache

⬢ Enable for all builds via gradle.properties

org.gradle.caching=true

Remote Build Cache

⬢ https://hub.docker.com/r/gradle/build-cache-node

⬢ Better with Gradle Enterprise

https://hub.docker.com/r/gradle/build-cache-node
https://gradle.com/gradle-enterprise-solutions/build-cache/

Building in parallel

⬢ Maximum parallelism --max-workers=16

○ Dependencies, artifact transforms, tasks using Worker API

⬢ Parallelism between projects with --parallel

⬢ Parallel test execution

tasks.test { maxParallelForks = 16 }

Understanding build execution

⬢ Why did the build take this long?

⬢ Which part or the build takes the most time?

⬢ Were there any cache misses due to a misconfiguration?

⬢ What was the historical performance of this test?

❯ gradle build --scan

publishes build scan to scans.gradle.com

https://scans.gradle.com/

https://ge.gradle.org/s/2jzng6ug3xpw6/timeline

Gradle Enterprise

Configuration Cache

Blank background use at will

https://ge.gradle.org/s/v6sg3vkfmhgju/timeline?details=am6ajxxyfdnoy&page=4

Configuration Cache

⬢ Caches the result of the configuration and the task graph

○ When nothing changed, the whole configuration phase is

skipped

⬢ Detects build logic inputs for invalidation

⬢ Task isolated from the mutable model and from each other

○ Executes all tasks in parallel (incl. intra-projects)

Configuration Cache

Configuration Cache

⬢ Enable for single build invocation with --configuration-cache

⬢ Enable for all builds via Gradle property

org.gradle.configuration-cache=true

⬢ Report failures as warnings with Gradle property

org.gradle.configuration-cache=warn

Configuration Cache Compatibility

⬢ Downside: You’ll probably need to change your build

⬢ Clear separation between configuration and execution

⬢ Correct declaration of inputs

⬢ No cross-dependencies between tasks

Forces good practices

CC Compatibility

⬢ Core JVM plugins ✅
⬢ Other core plugins ⏳

⬢ Kotlin ✅
⬢ Android ✅
⬢ Community Plugins 🌈

Configuration Cache Roadmap

⬢ Stable since Gradle 8.1

(and opt-in)

⬢ Activated by default in Gradle 9.0

(with opt-out)

⬢ Only mode in Gradle x.x

(without opt-out)

What is next?

What’s next

⬢ Faster IDE Sync: Isolated Projects

⬢ Public Roadmap

⬢ gradle.org

https://github.com/orgs/gradle/projects/31
https://gradle.org

Thank you!

wolf@gradle.com

Java Toolchains

Java Toolchains

plugins {
 application
 =/ => java
}

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 vendor = JvmVendorSpec.ADOPTIUM
 }
}

val testJavaVersion: String by project

tasks.withType<Test>().configureEach {
 javaLauncher = javaToolchains.launcherFor {
 languageVersion = JavaLanguageVersion.of(testJavaVersion)
 }
}

build.gradle.kts

Which Java toolchain does Gradle detect?

⬢ Autodetected defaults:

○ Per OS: Linux, macOS, Windows

○ Package managers: Asdf-vm, Jabba, SDKMAN!

○ Maven toolchains

⬢ Explicit configuration:

○ org.gradle.java.installations.fromEnv

○ org.gradle.java.installations.paths

⬢ Automatic toolchain download

○ foojay Disco API

https://github.com/foojayio/discoapi

Auto Provisioning

plugins {
 id("org.gradle.toolchains.foojay-resolver-convention")
}

settings.gradle.kts

Download toolchains using the Foojay Disco API

https://github.com/foojayio/discoapi

