TN — TECHNOLOGY
— CONSULTING

Rise of the Al Testers

Generate unit-tests with Al agents

Dr. Marie Bieth

, : 07/10/2025
Dr. Michael Oberparleiter



mailto:marie.bieth@tngtech.com
mailto:michael.oberparleiter@tngtech.com

Legacy code without tests TNG = Gonsuimine



Why Unit Tests? TNG = cosutnne

slow

fast




TN G — TECHNOLOGY
— CONSULTING

'I Agents for unit tests
generation




The simple approach TNG = e

Providing an LLM with the test class and instructions to write tests.

public class AccountServiceImplTest {
private User user;
private Account account;

aTest

void testCreateAccount() {
when(accountRepository.save(any(Account.class))).thenReturn(account);
Account createdAccount = accountService.createAccount(user);

//not testing the logic inside createAccount, only the mock
assertEquals(account.getAccountNumber(), createdAccount.getAccountNumber());
assertEquals(account.getBalance(), createdAccount.getBalance());
assertEquals(account.getUser(), createdAccount.getUser());



Bl The simple approach TNG = 5000

To write good tests, you need to:

Understand the code

Generate test scenarios

Generate tests

Ensure that they compile and pass



Divide and Conquer

= A solution: distribute tasks to agents
= Testwriter
= Code compiler
= Test executor

= Error solver

TNG

TECHNOLOGY
CONSULTING



B The agentic approach TN G = ooy

Production code I Test code

\




B Unit Test Writer TN G = [ctowoer

Responsible for initially writing the tests, in multiple steps:

Describe what each public method does

Generate test scenarios for each public method

Write test code for each scenario

= Merge tests into a single class (including mocks, setup and teardown)



Compiler and test runner TN G = rechnososy

= No LLMs here, just shell scripts and log files

= Recognize the tooling used to compile and run the project



Debugging with the error solver TNG Eiﬂfﬁ?ﬁ;

Responsible for fixing compiling and test errors:

receives the problematic test class
= receives error from compilation or test logs

explains the error (cause, location, solution strategy)

generates a patch to solve error

Patches avoid unintended modifications to the rest of the class



The agentic approach TN G = ooy

Production code I Test code

\




We need context... TNG = Gl



50 does an LLM TNG = e

The code of the class to test is not self-contained and we need at least the
signature of dependencies.

= Brute-force: Just pass the entire repo in the prompt. This can work, but:
= Hard token limits, token costs, long response times
= LLM gets confused by irrelevant information
= Other extreme: Turn the repo into a graph, put it in a database, do retrieval-
augmented generation
= Complex setup, but suitable for large repos and complex tasks
= Overkill for unit tests

= Sweet spot: Repository map



; ; TECHNOLOGY
What is a repository map? TNG = Eoieos

= Concept and code based on https://github.com/Aider-Al/aider with

underlying tree-sitter library

Condense the repo into a map of classes and functions.

Type and call signature are needed for correct mocks.

We still do not want to send the entire map:

= Graph-ranking algorithm finds the important parts of the code base.

= Token budget limits what is deemed still relevant.


https://github.com/Aider-AI/aider

How does the repo map end up in the context? TN G = [ctinowoot

CONSULTING

Example of a map part passed as "This is some context that might help you with your task”:

PosixPath('src/main/java/com/webapp/bankingportal/service/GeolocationServiceImpl.java'): '

@Service
aS1f4j

public class GeolocationServiceImpl implements GeolocationService {

@0verride
@Async

public CompletableFuture<GeolocationResponse> getGeolocation(String ip) {



Technical breakdown

Response

Parser
(Python)

LN Test generation orchestrator PIARAARESS Docker container

(Python) (compilation & execution)

Repository

TN

— TECHNOLOGY
— CONSULTING



TN G — TECHNOLOGY
— CONSULTING

2 Results




What is a good test? TNG = e

= Code coverage: how many lines of code are run by tests

= Mutation score: how many code changes can the tests catch

public class AccountServiceImplTest {
private User user;
private Account account;

aTest

void testCreateAccount() {
when(accountRepository.save(any(Account.class))).thenReturn(account);
Account createdAccount = accountService.createAccount(user);

//not testing the logic inside createAccount, only the mock
assertEquals(account.getAccountNumber(), createdAccount.getAccountNumber());
assertEquals(account.getBalance(), createdAccount.getBalance());
assertEquals(account.getUser(), createdAccount.getUser());



Benchmarking: Commercial LLMs TNG TECHNOLOGY

CONSULTING

= Set of 17 classes from 5 open-source repos, ranging from Spring-Boot examples to thread benchmarking
= Success: mutation coverage > 80%, failure: 0% coverage

= All state-of-the-art commercial LLMs perform very well



Benchmarking: Open weight vs commercial LLMs TNG = Eiioesy

CONSULTING

= Not as good as commercial LLMs, but suitable for productive use.

= Larger, newer models perform better. But even Devstral will do a decent job.



Benchmarking: Can you test everything? TN G = [ECHnowooy

Straightforward to test code: Hard to test code:

= |f your code is untestable or requires contortions for a test, no LLM can help you

= Well-testable logic shows the strengths of the LLMs.



Large codebases TNG = e

Repo used: ThingsBoard

The more complex build setup and multiple submodules create additional
challenges:

= Generally slower feedback cycles.
= Correctly built context is more important.

= |nvesting in the static initial tool setup pays off.


https://github.com/thingsboard/thingsboard

Can't?l just ask Copilot/Roo Code/Cursor for TN G = [EcrnoLoer
tests™

Especially agentic assistants are suited: feedback loops are important.

With a top-of-the-line LLM in the background you get high quality tests.

Tools also rely on feedback from executing tests and processing the errors.

General purpose vs specialized tool:

= Handholding needed, some behaviour cannot be enforced by prompts
= Will modify the tested code to make tests work sometimes.

= Occasionally not enough context for debugging.

= |solation of generated code is your own problem.

= Large codebases exacerbate these differences:

= Flexibility becomes a curse.



Challenges and next steps TNG = Eiioesy

CONSULTING

We started this project end of 2024 and got nice results, but the LLM tool
landscape evolved rapidly in 6 months.

Who knows what will be there in another 6?

Current limitations in our approach:
= The productive code needs to be testable
= Tests are generated for the current behavior of the productive code

= Thereis such a thing as "too many tests”

Next steps:
= Extend to integration and E2E tests
= Check correctness of productive code

= Test-driven development



TN — TECHNOLOGY
— CONSULTING

Thank you for your attention

Any questions?

Dr. Marie Bieth Dr. Michael Oberparleiter

Principal Consultant Senior Consultant

marie.bieth(dtngtech.com michael.oberparleiter(@tngtech.com


mailto:marie.bieth@tngtech.com
mailto:michael.oberparleiter@tngtech.com

