
1

Rise of the AI Testers

Generate unit-tests with AI agents

Dr. Marie Bieth

Dr. Michael Oberparleiter
07/10/2025

mailto:marie.bieth@tngtech.com
mailto:michael.oberparleiter@tngtech.com

2 Legacy code without tests

3 Why Unit Tests?

Unit tests

Integration
tests

E2E
tests

slow

fast

4

1 Agents for unit tests

generation

5 The simple approach

Providing an LLM with the test class and instructions to write tests.

public class AccountServiceImplTest {

 private User user;

 private Account account;

 @Test

 void testCreateAccount() {

 when(accountRepository.save(any(Account.class))).thenReturn(account);

 Account createdAccount = accountService.createAccount(user);

 ��not testing the logic inside createAccount, only the mock

 assertEquals(account.getAccountNumber(), createdAccount.getAccountNumber());

 assertEquals(account.getBalance(), createdAccount.getBalance());

 assertEquals(account.getUser(), createdAccount.getUser());

 }

}

6 The simple approach

To write good tests, you need to:

Understand the code

Generate test scenarios

Generate tests

Ensure that they compile and pass

7 Divide and Conquer

A solution: distribute tasks to agents

Test writer

Code compiler

Test executor

Error solver

8 The agentic approach

Test codeProduction code Error fixer

Compiler

Test runner

Test writer

9 Unit Test Writer

Responsible for initially writing the tests, in multiple steps:

Describe what each public method does

Generate test scenarios for each public method

Write test code for each scenario

Merge tests into a single class (including mocks, setup and teardown)

10 Compiler and test runner

No LLMs here, just shell scripts and log files

Recognize the tooling used to compile and run the project

11 Debugging with the error solver

Responsible for fixing compiling and test errors:

receives the problematic test class

receives error from compilation or test logs

explains the error (cause, location, solution strategy)

generates a patch to solve error

Patches avoid unintended modifications to the rest of the class

12 The agentic approach

Test codeProduction code Error fixer

Compiler

Test runner

Test writer

13 We need context...

14 ...so does an LLM

The code of the class to test is not self-contained and we need at least the

signature of dependencies.

Brute-force: Just pass the entire repo in the prompt. This can work, but:

Hard token limits, token costs, long response times

LLM gets confused by irrelevant information

Other extreme: Turn the repo into a graph, put it in a database, do retrieval-

augmented generation

Complex setup, but suitable for large repos and complex tasks

Overkill for unit tests

Sweet spot: Repository map

15 What is a repository map?

Concept and code based on https://github.com/Aider-AI/aider with

underlying tree-sitter library

Condense the repo into a map of classes and functions.

Type and call signature are needed for correct mocks.

We still do not want to send the entire map:

Graph-ranking algorithm finds the important parts of the code base.

Token budget limits what is deemed still relevant.

https://github.com/Aider-AI/aider

16 How does the repo map end up in the context?

Example of a map part passed as "This is some context that might help you with your task":

PosixPath('src/main/java/com/webapp/bankingportal/service/GeolocationServiceImpl.java')� '

⋮

│@Service
│@Slf4j
│public class GeolocationServiceImpl implements GeolocationService {
⋮

│ @Override
│ @Async
│ public CompletableFuture<GeolocationResponse> getGeolocation(String ip) {
⋮

│ }
⋮

│}
'

17 Technical breakdown

Repository
Test generation orchestrator
(Python)

Docker container
(compilation & execution)

LLM

Parser
(Python)

CLI

Context

Prompts

Response

Code

Tests

Feedback

18

2 Results

19 What is a good test?

Code coverage: how many lines of code are run by tests

Mutation score: how many code changes can the tests catch

public class AccountServiceImplTest {

 private User user;

 private Account account;

 @Test

 void testCreateAccount() {

 when(accountRepository.save(any(Account.class))).thenReturn(account);

 Account createdAccount = accountService.createAccount(user);

 ��not testing the logic inside createAccount, only the mock

 assertEquals(account.getAccountNumber(), createdAccount.getAccountNumber());

 assertEquals(account.getBalance(), createdAccount.getBalance());

 assertEquals(account.getUser(), createdAccount.getUser());

 }

}

20 Benchmarking: Commercial LLMs

Set of 17 classes from 5 open-source repos, ranging from Spring-Boot examples to thread benchmarking

Success: mutation coverage > 80%, failure: 0% coverage

All state-of-the-art commercial LLMs perform very well

21 Benchmarking: Open weight vs commercial LLMs

Not as good as commercial LLMs, but suitable for productive use.

Larger, newer models perform better. But even Devstral will do a decent job.

22 Benchmarking: Can you test everything?

Straightforward to test code: Hard to test code:

If your code is untestable or requires contortions for a test, no LLM can help you

Well-testable logic shows the strengths of the LLMs.

23 Large codebases

Repo used: ThingsBoard

The more complex build setup and multiple submodules create additional

challenges:

Generally slower feedback cycles.

Correctly built context is more important.

Investing in the static initial tool setup pays off.

https://github.com/thingsboard/thingsboard

24
Can't I just ask Copilot/Roo Code/Cursor for
tests?

Especially agentic assistants are suited: feedback loops are important.

With a top-of-the-line LLM in the background you get high quality tests.

Tools also rely on feedback from executing tests and processing the errors.

General purpose vs specialized tool:

Handholding needed, some behaviour cannot be enforced by prompts

Will modify the tested code to make tests work sometimes.

Occasionally not enough context for debugging.

Isolation of generated code is your own problem.

Large codebases exacerbate these differences:

Flexibility becomes a curse.

25 Challenges and next steps

We started this project end of 2024 and got nice results, but the LLM tool

landscape evolved rapidly in 6 months.

Who knows what will be there in another 6?

Current limitations in our approach:

The productive code needs to be testable

Tests are generated for the current behavior of the productive code

There is such a thing as "too many tests"

Next steps:

Extend to integration and E2E tests

Check correctness of productive code

Test-driven development

26

Thank you for your attention

Any questions?

Dr. Marie Bieth
Principal Consultant

marie.bieth@tngtech.com

Dr. Michael Oberparleiter
Senior Consultant

michael.oberparleiter@tngtech.com

mailto:marie.bieth@tngtech.com
mailto:michael.oberparleiter@tngtech.com

