
© 2010 IBM Corporation

Erich Gamma
IBM distinguished engineer
IBM rational zurich research lab

Agility @ Scale - Enabling Collaboration across Silos

http://www.java-forum-stuttgart.de/abstracts.html

© 2010 IBM Corporation

First Assignment: Eclipse

 A tools integration platform
 Scalable
 Easy to extend
 Enable a tools ecosystem

 Goal: Built to last

© 2010 IBM Corporation

Inspiration: how buildings last

Site

• Stewart Brand: how buildings learn
– what happens after they're built

• stuff: furniture
• services: electrical, plumbing (7-15y)
• structure: foundation, load bearing walls (30-300y)
• site: geographical setting (forever)

• layers:
• evolve at different rates during the life of a building
• shear against each other as they change at different rates
• an adaptive building must allow slippage
 a building that lasts is adaptive and can change over time
 lasts for generations without total rebuilding

© 2010 IBM Corporation

structure foundation

 the eclipse plug-in architecture
 everything is a plug-in

 simple and consistent

© 2010 IBM Corporation

eclipse plug-in architecture

 plug-in == component
 set of contributions
 smallest unit of Eclipse function
 details spelled out in plug-in manifest

 extension point – named entity for collecting
contributions

 extension – a contribution
 Example: a specific spam filter tool

 runtime – controls and manages contributions

plug-in

platform

plug-in

Extension
Extension point

 runtime

© 2010 IBM Corporation

scalability

<action
 toolbarPath=“search"
 icon="icons/opentype.gif“
 toolTip=“Open Type”
 class="org.eclipse.jdt.OpenTypeAction"/>

org/eclipse/jdt/OpenTypeAction.class

user visible
appearance

contribution
implementation

lazily instantiated using
reflection

© 2010 IBM Corporation

services plumbing: APIs

 Plug-in dependencies through APIs
 define APIs for stability

 binary compatibility is highest priority

© 2010 IBM Corporation

APIs first

 APIs don’t just happen; we need to design them

 specifications with precisely defined behavior
 what you can assume (and what you cannot)
 it works ≠ API compliant
 documented classes ≠ API

 must have at least one client involved, preferably more

© 2010 IBM Corporation

extension interfaces: IAdaptable

 adding interfaces to existing types
 Interface negotiation

<extension point="org.eclipse.core.runtime.adapters">
<factory
 class="org.eclipse.jdt.internal.ui.JavaElementAdapterFactory"
 adaptableType="org.eclipse.jdt.core.IJavaElement">
 <adapter type="org.eclipse.ui.IPersistableElement"/>
 …
</factory>

© 2010 IBM Corporation

I*2 extension interfaces

 add new methods in extending API interface with extension interfaces
 avoids breaking existing implementors of an interface

public interface IActionDelegate { … } // original interface
public interface IActionDelegate2 extends IActionDelegate {
 void dispose();
}

if (d instanceof IActionDelegate2) {
 IActionDelegate2 d2 = (IActionDelegate2) d;
 d2.dispose(); // call new method
}

11 © 2010 IBM Corporation

Key Lessons
 Modularity matters

 Everything is a plug-in
 “no exceptions”

APIs are a huge commitment
 we would rather provide less API than desired (and

augment) than provide the wrong (or unnecessary) API
and need to support it indefinitely

 the tyranny of stable APIs
 API layers…

 the challenge of product developers
 which API level does our product require and support

 n–1, n-2

12 © 2010 IBM Corporation

Next assignment: A Tool Integration
Platform

 Integrate many tools
 Heterogeneous environments that

are flexible for partners and
suppliers

 Acquisitions raise expectations for
product integrations

 Global Connectedness
 Distributed development, cross site

product development
 Lifecycle / Agile Methods

 Flexible tools and process

Tool E
UI

LOGIC

DB

UI

LOGIC

DB

UI

LOGIC

DB

UI

LOGIC

DB

UI

LOGIC

DB

Tool B

Tool D

Tool C

Tool A

13 © 2010 IBM Corporation

Traditional Tool Integration. Ouch.

 N2 possible point-to-point connections
 Limited coverage

 Closed APIs
 Vendor lock-in

 Tight Coupling
 Dependence on internal structures

 Lockstep upgrades
 Version incompatibilities

 Need something better…

IBM Software Group | Rational software

14Innovation for a smarter planet

Jazz is…

 Our vision of the future of
systems and software delivery

 A scalable, extensible team
collaboration platform

 An integration architecture
enabling mashups and non-
Jazz products to participate

 A community at Jazz.net where
Jazz products are built

Jazz is a platform for transforming software delivery

c Rational
Offerings

Third party
Offerings

Business Partner
Offerings

Jazz is a platform for transforming how people
work together to deliver greater value and

performance from their software investments.

Storage
Collaboration

QueryDiscovery

Administration:
Users, projects,

process

Best Practice Processes

Presentation:
Mashups

Future
IBM

Capabilities

Product
& Project

Management
Collaborative

Lifecycle
Management Engineering

& Software
Tools

Business
Planning &
AlignmentYour

existing
capabilities 3rd-Party

Jazz
Capabilities

Compliance
& Security

Storage
Collaboration

QueryDiscovery

Administration:
Users, projects,

process

Best Practice ProcessesBest Practice Processes

Presentation:
Mashups

Future
IBM

Capabilities
Future
IBM

Capabilities

Product
& Project

Management
Collaborative

Lifecycle
Management Engineering

& Software
Tools

Engineering
& Software

Tools

Business
Planning &
Alignment
Business
Planning &
AlignmentYour

existing
capabilities

Your
existing

capabilities 3rd-Party
Jazz

Capabilities

Compliance
& Security

IBM Software Group | Rational software

15Innovation for a smarter planet

Inspiration: the Internet

 Amazingly scalable

 Integrates information on a massive
scale

 Infinitely extensible

 Collaboration on unprecedented scale

 World-wide information visibility Web Pages
html, css, js

Audio/Video
mp3, divx, mov

Documents
pdf, doc

Index
google,
yahoo

HTTP
get/put/post

IBM Software Group | Rational software

16Innovation for a smarter planet

How does this work?

 All data are resources with URLs

 Resources have representations

 Representations are specified independently of tools

 Links are embedded URLs

 Tools (multiple) access data through HTTP get/put/post/delete

Diagrams

Requirements

Change
Requests

Global
Index

HTTP
get/put /post

17

Living Architectures

Copyright © IBM Corp., 2010. All rights reserved. Licensed under EPL, v1.0.

Jazz architectural principles

 Jazz separates the implementation of tools from the definition of and
access to the data
– Data semantics do not rely on "secret knowledge" embedded in product

code.
 Jazz can access and integrate data where it resides

– Jazz does not need to import and export data between tools or repositories
 Jazz assumes an open, flexible, distributed data model.

– Jazz does not assume that there is a single data model that is centrally
managed, nor that each tool needs to understand the entire data model in
order to participate.

 Jazz allows tools to be implemented in any Internet-aware
programming language or platform.
– Jazz does not impose an implementation framework tied to a particular

language or technology platform
– Provide optional toolkits to aid in tool implementation

18 © 2010 IBM Corporation
18

Bus Proc
Model

Software &
Solution

Architecture
DevelopmentEnterprise

Architecture
Require-
ments Test

http://acme.com/paymentService

Data Integration – the new way – “www
linked data”

http://acme.com/paymentProcess

about

about
about about

HTTP/RESTHTTP/REST

19 © 2010 IBM Corporation

Architectural Rules

 R1: Independent upgrade
 R2: Rich Integration
 R3: Limited application coupling
 R4: Open world

20 © 2010 IBM Corporation

R1: Independent upgrade

 Customers must be able to upgrade their products one at a
time in the order of their choice
 product teams must commit to managing their dependencies so that

this will always be the case
 Easy to say; easy to understand; highly motivational
 Smooth upgrading is a corollary

 customers must not feel that they are losing/breaking their
applications (or application data) as a side effect of
upgrading any of their products.

 Client - server compatibility issues are included here.

21 © 2010 IBM Corporation

21

R2: Rich integration (with loose coupling!)

Rich hovers
provide at-a-
glance, in-
context
information

Link Dialogs enable
cross-repository
linking

Dashboards in all products aid in transparency

22 © 2010 IBM Corporation

Surprise!

22

De
gr

ee
 o

f C
ou

pl
in

g

Seamlessness of Interactions

High

Low

Clunky Slick

Import/Export

Traditional Library/API

Framework

REST API

Delegated REST API

23 © 2010 IBM Corporation

R3: Limited application coupling

Applications will depend on few other applications.

 If we’re not careful, we get caught in the dependency web

Yet, applications need to interact

24 © 2010 IBM Corporation

R4: open world

New products can be integrated after the
fact, and their capabilities are reflected in
the user and programmatic interfaces

Don’t assume you know everything up front

25 © 2010 IBM Corporation

Open Services for Lifecycle Collaboration
An initiative aimed at simplifying tool integration across the software delivery lifecycle

Specifications for sharing
lifecycle resources

Inspired by Internet
architecture
Loosely coupled integration with
“just enough” standardization

Common resource formats and
services

A different approach to
industry-wide proliferation

Open Services for
Lifecycle Collaboration

Barriers to sharing
resources and assets
across the software
lifecycle
Multiple vendors, open

source projects, and in-
house tools

Private vocabularies,
formats and stores

Inextricable entanglement
of tools with their data

25

26 © 2010 IBM Corporation
26

Open Services for Lifecycle Collaboration
Putting the approach into practice

Step 1: Internet URLs for resources

Step 2: Shared resource formats

Step 3: Shared resource services

27 © 2010 IBM Corporation

Community: open-services.net

 Started in 2008
 Open community contribution
 Scenario driven...a minimalist

approach
 Divided into focus areas
 Change Management
 Quality Management
 Estimation & Measurement,
 Requirements Management, …

 Solving integration in the open

 Wiki and mailing lists

 License terms
 Specifications are created

under a Creative Commons
Attribution copyright license

 Covenant – specification
implementers are free from
patent claims by contributors

 Process Stages
 Scope (scenarios)
 Draft
 Convergence (IP covenant)
 Final Specification

27

28 © 2010 IBM Corporation

OSLC at Work
Loosely coupled integration with “just enough”
standardization

Change Mgmt
System

Test
Management

POST, Query, etc
change requests

•Spec dictates the bare minimal aspects of defect

•QM system posts “seed data”

•QM system gets URL of form; delegates back to CM system

QM system can interface with any OSLC-compliant change
management system

29 © 2010 IBM Corporation

Styles of Integration
 HTTP REST API – “Rich” style

 Web technologies – pervasive support across languages and Operating
Systems

 Resource-oriented – requires agreement on the resource representations
 Careful resource design can avoid “closed world” assumptions
 Exposes details of the data in resource representations
 Can leverage client libraries, but does they are outside of the API boundary

 HTTP REST API “Delegated”/Widget Style
 Relies on discoverable URLs for services
 Minimizes dependencies: delegates back to application
 Introduces out-of-bands communication between delegated form and host

application

29

30 © 2010 IBM Corporation

OSLC Specification http://open-services.net/bin/view/Main/CmSpecificationV1

31 © 2010 IBM Corporation

Retrieving a Defect

32 © 2010 IBM Corporation

Service Discovery

1. Discover the existence of the
Change Management system
itself, known URL
 E.g. https://rtc:9443/rtc/rootservices

1. Discover the contexts (e.g.
projects) in which change
requests may exist, e.g project

2. Discover the services that are
provided within that context

33 © 2010 IBM Corporation

Discovering the Creation Dialog

34 © 2010 IBM Corporation3434

Team Concert
(delegated UI)

Single URL
(OSLC) calls RTC

Creates link on
Test Case & Team
Concert work-item

OSLC example: What are you testing?

35 © 2010 IBM Corporation
35

OSLC example: Creating Test Cases from Requirements

36 © 2010 IBM Corporation36

OSLC example: Resource Links in Requirements Tool

Implemented By

Validated By

Back Link

37 © 2010 IBM Corporation
37

What Makes the OSLC Approach Better?

Traditional Approach
 Brittle integrations, version-

specific APIs
 Monolithic repository or

import/export
 “Boil the ocean” meta-model

design
 Forced migration to a common

code base
 Premature architectural

decisions
 A vendor-led “partners”

program

OSLC Approach
 Loosely-coupled
 URLs
 Minimalist
 Technology-neutral
 Incremental
 Open

38 © 2010 IBM Corporation

See it live at Jazz.net
 Transparent development

 Jazz architecture
 Jazz products

 Self-hosting
 Using Jazz products…
 … to develop Jazz products

 Learn about Jazz at Jazz.net
 Participate in the evolution

 Try it
 Sandbox available

	Agility @ Scale - Enabling Collaboration across Silos
	First Assignment: Eclipse
	Inspiration: how buildings last
	structure foundation
	eclipse plug-in architecture
	scalability
	services plumbing: APIs
	APIs first
	extension interfaces: IAdaptable
	I*2 extension interfaces
	Key Lessons
	Next assignment: A Tool Integration Platform
	Traditional Tool Integration. Ouch.
	Jazz is a platform for transforming software delivery
	Inspiration: the Internet
	How does this work?
	Jazz architectural principles
	Data Integration – the new way – “www linked data”
	Architectural Rules
	R1: Independent upgrade
	R2: Rich integration (with loose coupling!)
	Slide 22
	R3: Limited application coupling
	R4: open world
	Slide 25
	Open Services for Lifecycle Collaboration Putting the approach into practice
	Community: open-services.net
	OSLC at Work Loosely coupled integration with “just enough” standardization
	Styles of Integration
	OSLC Specification http://open-services.net/bin/view/Main/CmSpecificationV1
	Retrieving a Defect
	Service Discovery
	Discovering the Creation Dialog
	Slide 34
	Slide 35
	OSLC example: Resource Links in Requirements Tool
	What Makes the OSLC Approach Better?
	See it live at Jazz.net

