


Trends in modern software architecture
...and how to avoid them



OVERVIEW
• Hexagonal Architecture
• Reactive Programming Models
• CQRS
• Event Sourcing
• Summary



HEXAGONAL
ARCHITECTURE



WHAT IS IT?

Layered Hexagonal



PROMISE
• Protect your core domain model against leaking
• Outer layers can never force changes to the core



PITFALLS
You end up with lots of interfaces and duplications

that constantly change during development,
creating a hard-to-maintain codebase



ALTERNATIVES
• What do you want to achieve?

▪ Protect core domain → Why ports & adapters?
▪ Enforce architectural rules → ArchUnit

• Apply abstractions where they make sense
• Apply common sense everywhere else



CONCLUSION
• Preventing your core domain model from leaking

to the web is common sense
• Dozens of interfaces with exactly one

implementation are ridiculous



REACTIVE PROGRAMMING
MODELS



WHAT IS IT?
• Classic, blocking programming models
 
 
 → Thread per Request-Model
 → Methods return results

• Reactive programming models
 
 
 → Event Loop Model
 → Callback functions or Futures



PROMISE
• Threads not blocked by downstream work
• Very responsive applications
• Tens of thousands of requests in seconds



PITFALLS
• Very different programming model
• Very steep learning curve
• Blocking downstream APIs



ALTERNATIVES
• Consider expected load scenarios before making

design decisions
• In most cases, horizontal scaling might prove to

be more cost-efficient
• In Java, Virtual Threads might make reactive

APIs obsolete



CONCLUSION
From the Spring WebFlux documentation:

“ We expect that, for a wide range of applications,
the shift is unnecessary. ”



CQRS



WHAT IS IT?
• Command-query responsibilty segregation
• Separate write- & read-models



PROMISE
• APIs with asymmetric read-write load
• APIs where queries require computed outputs
• Message-driven APIs

...all benefit from separate models



PITFALLS
Maintaining separate models, along with controller

classes, business logic, persistence layers etc,
leads to far more complex software projects
Separate models implicitly lead to eventual

consistency (stale reads)



ALTERNATIVES
Always consider using a plain CRUD API first

Start CRUD API, evolve a separate write API over
time, keeping the CRUD API for queries



CONCLUSION
From Greg Young's blog:

CQRS is not a silver bullet
CQRS is not a top level architecture
CQRS is not new
CQRS is not shiny
CQRS will not make your jump shot
any better
[...]
CQRS can open many doors.



EVENT SOURCING



WHAT IS IT?

Object Persistence Event Sourcing



PROMISE
Focus on change instead of state makes building

reactive systems easier
All domain objects implicitly have a history



PITFALLS
Very complex persistence pattern

Usually implemented along with CQRS, leading to
expotentially more complex software systems
When used with CQRS, the aggregates aren't

allowed to answer queries
Very steep learning curve



ALTERNATIVES
Event-driven systems can easily be build using

simple persistence patterns
When a history of domain objects is required (eg,

for auditing), consider using Envers



CONCLUSION
Unless you're building a real-time stock trading

system, don't do it



THE QUEST FOR SIMPLICITY



THE QUEST FOR SIMPLICITY
Do the simplest thing that could possibly work

Non-functional requirements matter!
Consider the available skill set

Mind Conways law
Highly aligned, loosely coupled

Make sure technical and business goals align



THANK YOU!

Slides LinkedIn

https://github.com/wicked539/architecture-trends
https://www.linkedin.com/in/sven-m%C3%BCller-a96a17310/
https://github.com/wicked539/architecture-trends
https://www.linkedin.com/in/sven-m%C3%BCller-a96a17310/

