
qaware.de

ISO 27001 und moderne Softwareentwicklung:
Wie passt das zusammen?

Mario-Leander Reimer
mario-leander.reimer@qaware.de
@LeanderReimer @qaware
#CloudNativeNerd #gerneperdude

2

Mario-Leander Reimer
Managing Director | CTO
@LeanderReimer
#cloudnativenerd #qaware
#gernperDude

The World’s Third-Largest Economy Has Bad Intentions — and
It’s Only Getting Bigger

 3 QAware

https://sponsored.bloomberg.com/quicksight/check-point/the-worlds-third-largest-economy-has-bad-intentions-and-its-only-getting-bigger

4

The Java exploit for Heartbleed only had 186 lines of code.
The patch for Heartbleed only added 4 lines of code.

 5 QAware

Bounds check for the
correct record length

Apple‘s SSL bug: goto fail;

 6 QAware

Always goto fail;

Never called!

Log4Shell

 7 QAware

CVE-2021-44228

Date discovered: 24 Nov 2021
Date patched: 9 Dec 2021

 8 QAwarehttps://media.ccc.de/v/38c3-wir-wissen-wo-dein-auto-steht-volksdaten-von-volkswage

https://www.spiegel.de/netzwelt/web/volkswagen-konzern-datenleck-wir-wissen-wo-dein-auto-steht-
a-e12d33d0-97bc-493c-96d1-aa5892861027

We know where your car is 😱

/auditevents lists security audit-related events such as user login/logout. Also, we filter by principal or type among other fields.

/beans returns all available beans in our BeanFactory. Unlike /auditevents, it doesn’t support filtering.

/conditions, formerly known as /autoconfig, builds a report of conditions around autoconfiguration.

/configprops allows us to fetch all @ConfigurationProperties beans.

/env returns the current environment properties. Additionally, we can retrieve single properties.

/flyway provides details about our Flyway database migrations.

/health summarizes the health status of our application.

/heapdump builds and returns a heap dump from the JVM used by our application.

/info returns general information. It might be custom data, build information or details about the latest commit.

/liquibase behaves like /flyway but for Liquibase.

/logfile returns ordinary application logs.

/loggers enables us to query and modify the logging level of our application.

/metrics details metrics of our application. This might include generic metrics as well as custom ones.

/prometheus returns metrics like the previous one, but formatted to work with a Prometheus server.

/scheduledtasks provides details about every scheduled task within our application.

/sessions lists HTTP sessions, given we are using Spring Session.

/shutdown performs a graceful shutdown of the application.

/threaddump dumps the thread information of the underlying JVM.

GET /actuator/heapdump

Why Security Matters in Software Engineering

■ Cyber threats are growing – software is a primary attack vector.
■ Security is no longer optional – breaches cost millions in damages and reputation.
■ Regulations & compliance frameworks demand accountability.
■ Customers & partners expect secure software by default.

 11 QAware

Security must be built into every stage of software development.

What is ISO 27001? Why Should Software Engineers Care?

■ ISO 27001 is an international standard for an information security management
system (ISMS)

■ Provides a systematic approach to managing information security risks
■ Many organizations require and demand ISO 27001 for compliance.
■ Helps to build trust with customers, regulators, and stakeholders.

 12 QAware

📜 Key Components of ISO 27001
■ Risk management & threat mitigation.
■ Security policies & governance.
■ Technical & operational controls to

protect data.

✅ Software Engineers’ Role
■ Implement secure development practices

(ISO 27001 Annex A.8).
■ Ensure code, dependencies, deployment pipelines and

infrastructure are secure.
■ Automate security controls within CI/CD pipelines.

ISO 27001:2022 Controls from Annex A.8

 13 QAware

■ Access (1 - 5)
■ Operations (6 - 9)
■ Data Protection (10 - 13)
■ Administration (14 - 19)
■ Network (20 - 24)
■ Application (25 - 29)
■ Change (30 - 33)
■ Audit testing (34)

■ Organizational (#= 37)
■ People (#= 8)
■ Physical (#= 14)
■ Technological (#=34)

Annex A.8

 14

Mapping of A.8 Technological
Controls onto the SDLC

 QAware

Our Secure Software Development Lifecycle (SSDLC)

 15 QAware

Secure
Software
Develop
ment
Lifecycle

De
pl

oy
 &

Tr

ac
k

Test Develop

Design

Requirements Harmonize the design of
software changes with the
security architecture

Develop automated security tests
Guidelines (extract):

● Use of SAST mandatory (e.g.
Sonarqube, Trivy, etc.)

● Use of DAST highly recommended

Apply secure coding practices during
implementation
Guidelines (extract):

● Review of changes with security relevance
● We do not implement cryptographic

algorithms or security mechanisms
ourselves

Deployments only after sufficient
test & review validation

Collect and analyse the system
(security) requirements

Recognising and resolving
potential security bugs and
incidents during operation

When is the right time for a threat analysis?

Sir, we‘ve analyzed
their attack pattern

and there is a danger.

~ 50% of all threats are rooted in
the specification and design

■ With potentially serious consequences in
implementation and operation

■ Difficult to find automatically

■ What is needed:

An explorative method that can be used to
identify threats at the design stage

Threat analysis (threat modelling)

Threat modeling is an analysis of representations of a system in a
group of informed people to find concerns about security.

4 key questions:
1. What are we working on?

2. What can go wrong?
3. What are we going to do about it?
4. Did we do a good enough job?

 18

Threat modeling manifesto :
 We have come to value…
■ A culture of finding and fixing design issues

over checkbox compliance.
■ People and collaboration over processes,

methodologies, and tools.
■ A journey of understanding over a security or

privacy snapshot.
■ Doing threat modeling over talking about it.
■ Continuous refinement over a single delivery.

Who should threat model?
You. Everyone. Anyone who is concerned about
the privacy, safety and security of the system.

https://www.threatmodelingmanifesto.org/

 19

■ It is therefore advisable to analyse
attack patterns

■ STRIDE is frequently used - developed
by Loren Kohnfelder at Microsoft

■ Implementation in regular workshops
with architects and product owners,
among others

■ "Whiteboard hacking"

■ STRIDE structures threats into the
following 6 attack patterns:

- Spoofing
- Tampering
- Repudiation
- Information Disclosure
- Denial of Service
- Elevation of Privilege

All possible attacks cannot be thought through!

STRIDE Attack Patterns – Spoofing

Feigning a false identity

STRIDE Attack Pattern – Tampering

Manipulation of data and code

STRIDE Attack Pattern – Repudiation

Denial of identity or information

STRIDE Attack Pattern – Information Disclosure

Disclosure and dissemination of data

STRIDE Angriffsmuster – Denial of Service

Disruption to the availability of functions or data

STRIDE Attack Pattern – Elevation of Privilege

Appropriation of a role or authorisation

 26

...and the consequences

STRIDE as a structured approach

■ Document architecture (diagrams)

■ Identify and evaluate threats
- Some diagram elements (process, data store, data

flow, external entity) only susceptible to certain attack
patterns

- Evaluate according to impact and probability, among
other things

■ Define countermeasures
- Mitigation: Mitigate or complicate threat
- Avoid: Delete feature or change architecture
- Transfer: Transfer to someone else
- Accept: mostly out of cost-benefit considerations

■ Feedback and iteration

Three views of software architecture define the fields of clean
code, clean architecture, quality assurance and security.

 QAware | 28

The security architecture of a system defines how to secure
the individual views of the overall architecture.

 QAware | 29

Security Targets

Security Requirements

External Sources:
OWASP Top 10, BSI, DSGVO, ISO 27001

Se
cu

ri
ty

 A
rc

hi
te

ct
ur

e

(Secure)

(Secure)

(Secure)

Trust boundary

(Secured)
Communication Channel

Component

Secured Interface
via Gatekeeper

The security architecture consists of secure components and
communication channels.

 30 QAware

Component A Component B
Channel A-B

■ A system consists of components. These are connected by communication channels.
– Examples of components: Data centres, VMs, microservices, databases, software modules, …
– Each component is provided by someone who is trusted or untrusted.

■ Each component has a defined level of security. From insecure to very secure.
– How thorough does the gatekeeper need to be: from everyone's right to a fortress

■ Each channel has a defined level of security. From very secure to insecure.
– How robust is the channel and the protocol used in it against typical attacks?

Security components can form security groups with tough
border controls and lax internal security.

 31 QAware

Component A Component B

Component D

Component C
Strong Security

Weak Security

No Security

Security Group

The internal design of a trusted component is influenced by
the security requirements.

 32 QAware

■ Canonicalisation
– Lossless simplification of the representation.

■ Normalisation
– Lossy simplification of the representation.

■ Sanitization
– Removal of nonsensical and harmful data values

■ Validation
– Type check and value range check

https://wiki.sei.cmu.edu/confluence/plugins/servlet/mobile?contentId=88487694#content/view/88487694

 33 QAware

Some concepts of Domain Driven Design can ensure a robust
and secure design.

■ Value Objects
– Are defined by value and are immutable.
– Can contain other VOs.
– Can be used as attributes in entities
– Define and check important constraints.

■ Aggregates
– Controls access from outside
– Ensures consistency within the boundary
– Access via repositories

 QAware | 34

Clean Code &
Architecture

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
Good overall summary can be found at https://gist.github.com/wojteklu/73c6914cc446146b8b533c0988cf8d29

1. Follow standard conventions.
2. Keep it simple stupid. Simpler is always better.

Reduce complexity as much as possible.

General

1. Keep configurable data at high levels.
2. Prevent over-configurability.
3. Use dependency injection.

Design

1. Be consistent. If you do something a certain
way, do all similar things in the same way.

2. Use explanatory variables.
3. Avoid negative conditionals.

Understandability

1. Don’t be funny.
2. Choose descriptive and

unambiguous names.
3. Use pronounceable

names.
4. Use searchable names.

Names

1. Always try to explain yourself in
code.

2. Don't be redundant.
3. Don't add obvious noise.
4. Don't comment out code. Just remove.
5. Use as clarification of code.
6. Use as warning of consequences.

Comments

1. Fast.
2. Independent.
3. Repeatable.
4. Self-validating
5. Timely

Tests
1. Keep lines short.

2. Use white space to associate related things
and disassociate weakly related.

3. Don't break indentation.
4. Dependent definitions should be close.
5. Structure should clearly express modules,

layers, components or conceptual
architecture.

Source Code

1. Prefer data structures.
2. Hide internal structure.
3. Should be small.
4. Small number of variables.

Data Structures

lreimer/iso27001-secure-se

Google ErrorProne

 QAware | 36

plugins {
 id 'java'
 id "net.ltgt.errorprone" version "3.1.0"
}

dependencies {
 // dependency for the javac compiler plugin
 errorprone "com.google.errorprone:error_prone_core:2.19.1"
}

tasks.named("compileJava").configure {
 options.errorprone.enabled = true
 // and many other options
}

Find common programming mistakes early during development as part of the Java compile phase.

SonarCloud Security Analysis

 QAware | 37

plugins {
 id "jacoco"
 id "org.sonarqube" version "6.0.1.5171"
}

jacocoTestReport {
 reports { xml.required = true }
}

sonarqube {
 properties {
 property "sonar.projectKey", "lreimer_iso27001-secure-se"
 property "sonar.organization", "lreimer"
 property "sonar.host.url", "https://sonarcloud.io"
 }
}

Sonar can detect 54 security vulnerabilities and 38 security hotspots using static code analysis.

Docker Image Vulnerability Scanning

 QAware | 38

Installation and usage instructions for Docker Lint
https://github.com/projectatomic/dockerfile_lint
dockerfile_lint -f Dockerfile -r src/test/docker/basic_rules.yaml
dockerfile_lint -f Dockerfile -r src/test/docker/security_rules.yaml

Installation and usage instructions for Trivy
https://github.com/aquasecurity/trivy
trivy image -s HIGH,CRITICAL iso27001-service:1.0.0

Installation and usage instructions for Snyk
https://docs.snyk.io/snyk-cli/install-the-snyk-cli
snyk container test --file=Dockerfile iso27001-service:1.0.0

Several suitable tools can be used to scan your Docker images for vulnerable OS packages and other
software components.

Kubernetes Security Scanning

 QAware | 39

see https://github.com/zegl/kube-score
kubectl score src/main/k8s/base/microservice-deployment.yaml

Checkov, see https://github.com/bridgecrewio/checkov
checkov --directory src/main/k8s/base
checkov --directory src/main/k8s/overlays/int

Snyk, see https://docs.snyk.io/snyk-cli/install-the-snyk-cli
snyk iac test src/main/k8s/base
snyk iac test src/main/k8s/overlays/int

Trivy, see https://github.com/aquasecurity/trivy
trivy src/main/k8s -n default --report summary all
trivy src/main/k8s -n default --report all all

Many security misconfigurations are possible when deploying Kubernetes workloads. Most can be found
easily via static code analysis using different tools.

Terraform Security Scanning

 QAware | 40

TFLint und Rule Sets
see https://github.com/terraform-linters/tflint
see https://github.com/terraform-linters/tflint-ruleset-aws
terraform init
terraform plan
tflint

Checkov
see https://github.com/bridgecrewio/checkov
checkov --directory src/main/terraform

Snyk
https://docs.snyk.io/snyk-cli/install-the-snyk-cli
snyk iac test src/main/terraform/

Many security misconfigurations of your cloud infrastructure are possible when working with Terraform.
Most can be found easily via static code analysis using different tools.

Continuous Developer Experience

 QAware | 41

see https://github.com/pre-commit/pre-commit
brew install pre-commit

see https://pre-commit.com/hooks.html
see https://github.com/gruntwork-io/pre-commit
see https://github.com/antonbabenko/pre-commit-terraform

install the Git hook scripts
pre-commit install
pre-commit run --all-files

see https://github.com/lreimer/iso27001-secure-se/actions
see https://github.com/lreimer/iso27001-secure-se/actions/new?category=security

The linters and static analysis tools are ideally run before and with every Git commit and push. Also GitHub
and many other platforms provide CI and security integration functionality that can be used.

Monolithic, linear CI/CD pipelines are suboptimal and will
result in delayed feedback and long release cycles.

 QAware | 42

At the beginning often performed in parallel.
Later on, delayed until the end of sprint or the release.
Functionality vs. Performance vs. Security?
Which one first?

Secure Delivery Pipeline Architecture

 QAware | 44

Packages

Package

pu
bl

is
h

update

Runde
pl

oy

watch

Deploy w
at

ch

Dev GitOps

Build

push

Checkout Build Test Quality Package

Dev

Test (E2E, NFA)

trigger

test

Tests

Zed Attack Proxy (ZAP)

 QAware | 45

■ Widespread and well-known open source web application vulnerability scanner
■ Detailed documentation. International community.
■ Several modes of operation: Intercepting Proxy, Active und Passive scanner, HTTP Spider, Brute

Force Scanner, Port Scanner, OpenAPI v3, SOAP, GraphQL, Web Sockets
■ ZAP provides a powerful API and tools for Security Scanning Automation
■ The official ZAP Docker images provide an easy way to run ZAP, especially in CI/CD and container

runtime environments such as Kubernetes
– API Scan - a full scan of an API defined using OpenAPI / Swagger, or GraphQL
– Baseline Scan - a time limited spider which reports issues found passively
– Full Scan - a full spider, optional ajax scan and active scan which reports issues found
– Webswing - run the ZAP Desktop UI in a browser

■ https://www.zaproxy.org/docs/

Secure Delivery Pipeline Architecture

 QAware | 46

Packages

Package

pu
bl

is
h

update

Runde
pl

oy

watch

Deploy w
at

ch

Dev GitOps

Build

push

Checkout Build Test Quality Package

Dev

Test (E2E, NFA)

trigger

test

TestsQuality
Cockpit

report

PO

re
po

rt

Build Status
Code Quality
Test Results
Vulnerabilities
fit

ne
ss

 te
st

promote and deploy?

OWASP SAMM: Measuring & Improving Security Maturity

 QAware | 47

Software Assurance Maturity Model (SAMM)
■ Open-source framework by OWASP for improving software security.
■ Helps organizations assess, measure, and improve security practices.
■ Aligns with ISO 27001 for secure development maturity.
■ https://owaspsamm.org

📢 Why SAMM?
■ ISO 27001 tells you WHAT to do (security controls).
■ OWASP SAMM helps with HOW to do it (practical implementation).

https://owaspsamm.org

OWASP SAMM: Core Structure and Model

 QAware | 48

■ Mapping SAMM practices to ISO 27001
helps teams track progress and
continuously improve security maturity.

■ Use SAMM alongside ISO 27001 to drive
continuous security improvements.

SAMM Maturity Levels

■ Level 1: Basic security controls are in place
■ Level 2: Security practices are

documented and consistently applied
■ Level 3: Security practices are fully

integrated and optimized

Steps to Adopt OWASP SAMM in Your Team & Organization

 QAware | 49

Step 2: Define Security Goals
■ Set realistic security maturity targets.
■ Align goals with ISO 27001 compliance

requirements.

Step 3: Implement Enhancements
■ Improve security policies, secure coding

standards, testing automation.
■ Automate security controls within CI/CD.

Step 4: Measure and Integrate
■ Continuously track progress using SAMM

maturity score.
■ Conduct regular assessments and

improve weak areas.

Step 1: Assess Current Security Maturity
■ Use the OWASP SAMM self-assessment tool.
■ Identify strengths and gaps in your current

security practices.

Security maturity is a journey - start small, track progress, and continuously improve.

Security is one of several software quality attributes. Don't
treat it as 2nd class citizen! Secure by Design from Day 1!

 QAware | 50

Software Product
Quality

(ISO 25010)

● Modularity
● Reusability
● Analysability
● Modifiability
● Testability

Maintainability

● Confidentiality
● Integrity
● Non-repudiation
● Authenticity
● Accountability

Security

● Adaptability
● Installability
● Replaceability

Portability

● Co-existence
● Interoperability

Compatibility

● Maturity
● Availability
● Fault Tolerance
● Recoverability

Reliability

● Time Behaviour
● Resource Utilization
● Capacity

Efficiency

● Completeness
● Correctness
● Appropriateness

Functional Suitability

● Operability
● Learnability
● UI Aesthetics
● Accessibility

Usability

QAware GmbH | Aschauer Straße 30 | 81549 München | GF: Dr. Josef Adersberger, Michael Stehnken, Michael Rohleder, Mario-Leander Reimer
Niederlassungen in München, Mainz, Rosenheim, Darmstadt | +49 89 232315-0 | info@qaware.de

Thank you!
The next step? Let's talk.

Mario-Leander Reimer
Managing Director, CTO

mario-leander.reimer@qaware.de
+49 151 61314748

