
Dmitry Chuyko

HOTSPOT VS J9
WHICH ONE TO CHOOSE TO
CUT YOUR CLOUD BILLS

www.bell-sw.com | 2023

http://www.bell-sw.com

Dmitry Chuyko

www.bell-sw.com

@dchuyko

● OpenJDK optimization for x86 and ARM
● Development of microcontainers for Java
● Enhancement of Java HotSpot

Performance architect with 20+ years of experience in IT

Active OpenJDK contributor

Areas of expertise:

http://www.bell-sw.com

About BellSoft

BellSoft was founded in 2017 by Java and
Linux experts with 10+ years of experience
working in Sun/Oracle.
Headquarters in San Jose, California.

Members of:

● JCP executive committee
● OpenJDK Vulnerability Group
● GraalVM advisory board
● Linux Foundation
● Cloud Native Computing Foundation

● Leading OpenJDK contributor
● Developed and integrated JEP 315

(aarch64 optimization) and JEP 386
(Alpine Linux port)

● Maintain the upstream Arm port
● Brought musl libc support in GraalVM

BellSoft’s contributions
to OpenJDK

Our products

Liberica Native Image Kit JDK is a
GraalVM based tool for creating
performant native images.

Alpaquita Linux is 100% Alpine
compatible, secure, and optimized
for Java.

Liberica JDK is a 100% open-source
vanilla Java 8, 11, and 17
implementation.

Release schedule for all the products conforms to the LTS roadmap.
All products are available for a large number of platforms.

Java Linux

Some of Java features
that made it great

● JLS
● JVMS
● TCK

Garbage collection

Class library

Specifications

Backward compatibility

The Java Virtual Machine is the
cornerstone of the Java platform. It
is the component of the technology
responsible for its hardware- and
operating system independence,
the small size of its compiled code,
and its ability to protect users from
malicious programs.

JVM

Dark ages

1997 1998 2000

Java 1.1
Sun

Java 1.3
HotSpot as a default

Java 1.2
HotSpot add-on / JIT

K8 → J9
IBM

Gallant age

Java 7
Oracle / Tiered compilation / G1 / OpenJDK

Java 8 (LTS)
Tiered compilation by default / G1 by default*

2011 2014

Steam age

Java 9
AppCDS / Experimental Graal AOT & JIT Java 10 / Liberica JDK / Java 11 (LTS)

2017 2018

OpenJ9

AdoptOpenJDK

EclipseOMR

Modern age

GraalVM 2019
native-image JDK 14 / JDK 15

2019 2020

OpenJ9 JIT server

Modern age

JDK 16

JDK 17 (LTS)

Musl support / Liberica JDK Light

JDK 18 / JDK 19

2021 2022

Eclipse AdoptiumDayTrader study

DayTrader7 study claims

● Java 11. AdoptOpenJDK with HotSpot/OpenJ9

● Monolith app on OpenLIberty

● Desktop, 4 CPUs, 8 GB RAM (Xmx256m, Xmx1g)

● Linux

● 3 OpenJ9 configurations

Single (default) HotSpot configuration

● 51 - 55% faster startup time

● 45 - 57% smaller startup footprint

● 33% smaller footprint during application ramp-up

● Comparable throughput

Setup

Summary

Our setup

● AMD Ryzen 5 3600X @ 3.79GHz, 1x6x1

● 8 GB RAM

● Windows 10 / Ubuntu 20.04.3

● Intel Xeon Platinum 8268, 1x24x2

● 128 GB RAM

● CentOS 7

● AdoptOpenJDK 11.0.11 with OpenJ9

● Liberica JDK 11.0.12 LTS

● Xmx256m, Xmx1g

Desktop

Server

Java

JMeter

App

DB

HOST

Methodology

● OpenJ9 (1) (heap)
● OpenJ9 (2) (heap, class cache)
● OpenJ9 (3) (heap, class cache, fast compilation)
● HotSpot (heap)

HotSpot (heap, AppCDS, C1)

● RSS
● Application reports it’s started

● RSS

● RSS
● Throughput (TPS): JMeter, simple and mixed
● Latency (ms) – WRK2, simple and mixed

Main VM configuration types

Startup

No load

Under load

Repeated experiments

Desktop startup and
no load. Configurations

● “-Xmx256m“

● “-Xmx256m -Xshareclasses:name=mvn”

● “-Xmx256m -Xshareclasses:name=mvn -Xtune:virtualized -Xscmx200m”

● “-Xmx256m”

● “-Xmx256m -XX:SharedArchiveFile=app-cds.jsa -XX:TieredStopAtLevel=1”

OpenJ9 (1) (heap 256 MB):

OpenJ9 (2) (heap 256 MB, class cache):

OpenJ9 (3) (heap 256 MB, class cache,
fast compilation):

HotSpot (heap 256 MB) aka default:

HotSpot (heap 256 MB, AppCDS, C1):

Startup time on desktop (lower is better)

Liberica OpenJ9 (2) OpenJ9 (3) Liberica (default) OpenJ9 (1)

0

1000

2000

3000

4000

5000

6000

7000

Application Startup Time (Windows)

Ti
m

e,
 m

s

No load footprint on desktop (lower is better)

0 10000 20000 30000 40000 50000 60000 70000
Time, ms

Working Set Size, Mbytes

OpenJ9 (1) OpenJ9 (2) OpenJ9 (3) Liberica Liberica (default)

0

50

100

150

200

250

300

350

400

450

No load footprint on desktop (lower is better)

0 10000 20000 30000 40000 50000 60000
Time, ms

Working Set Size (Linux), Mbytes

OpenJ9 (3) OpenJ9 (2) OpenJ9 (1) Liberica Liberica (default)

0

50

100

150

200

250

300

350

400

450

Server under load. Configurations

● “-Xmx1G“

● “-Xmx1G -Xshareclasses:name=mvn”

● “-Xmx1G-Xshareclasses:name=mvn -Xtune:virtualized -Xscmx200m”

● “-Xmx1G -Xms80m”

● “-Xmx1G -Xms80m-XX:SharedArchiveFile=app-cds.jsa -XX:TieredStopAtLevel=1”

● “-Xmx1G -Xms80m-XX:SharedArchiveFile=app-cds.jsa
-XX:TieredStopAtLevel=1 -XX:+UseSerialGC“

OpenJ9 (1) (heap 1G):

OpenJ9 (2) (heap 1G, class cache):

OpenJ9 (3) (heap 1G, class cache, fast compilation):

HotSpot (max heap 1G, initial heap 80 MB):

HotSpot (max heap 1G, initial heap 80 MB, AppCDS, C1):

HotSpot (max heap 1G, initial heap 80 MB, SerialGC):

Footprint on server under load (lower is better)
OpenJ9 (3)

OpenJ9 (1) Liberica (-Xmx1G -Xms80m -Xverify:none - XX:TieredStopAtLevel=1) Liberica (default)(-Xmx1G -Xms80m)

Liberica (-Xmx1G -Xms80m -XX:+UseSerialGC -Xverify:none - XX:TieredStopAtLevel=1) OpenJ9 (2)

0 50000 100000 150000 200000 250000 300000 350000
0

200

400

600

800

1000

1200

Time, ms

Resident Set Size under Load, MB

Throughput on server after warmup
HotSpot (max heap 1G, initial heap 80 MB)

OpenJ9 (3) (heap 1G, class cache, fast compilation) HotSpot (max heap 1G,
initial heap 80 MB, AppCDS, C1)

HotSpot (max heap 1G,
initial heap 80 MB, SerialGC)

OpenJ9 (1) (heap 1G) OpenJ9 (2) (heap 1G, class cache)

0

100

200

300

400

500

600

700

800

900

Latency, ms

Latency on server after warmup
OpenJ9 (1) (heap 1G)

OpenJ9 (2) (heap 1G, class cache) HotSpot (max heap 1G, initial heap 80 MB) HotSpot (max heap 1G, initial heap 80 MB, SerialGC)

HotSpot (max heap 1G, initial heap 80 MB, AppCDS, C1) OpenJ9 (3) (heap 1G, class cache, fast compilation)

10,99980,99960,99940,99920,999
0

500

1000

1500

2000

2500

Percentile

Latency, ms

Conclusions
Takeaways

● Check your setup
● Check your app

● Years of optimizations, many similarities
● Some configurations may differ significantly, any side may “win”

● Defaults are usually good
● Study your app and JVM

Every benchmark lies differently

HotSpot and OpenJ9 show great results

Tuning gives you a lot

Thank you for
your attention!

https://bell-sw.com

@dchuyko

dmitry.chuyko@bell-sw.com

https://bell-sw.com
mailto:dmitry.chuyko@bell-sw.com

