
Loosely or Lousily Coupled?

Understanding 
Communication Patterns in 
Microservices Architectures

@berndruecker



Let‘s talk about food



How does ordering Pizza work?

Pizza 
Place

You

Phone Call
Synchronous blocking communication
Feedback loop (ack, confirmation or rejection)
Temporal coupling (e.g. busy, not answering)

Pizza 
Place

You

Email

Asynchronous non-blocking communication
No temporal coupling

Pizza 
Place

You

A feedback loop might make sense
(ack, confirmation or rejection)

Email

Confirmation Email

@berndruecker



Feedback loop != result

Pizza 
Place

You

Email

Confirmation Email

Pizza Delivery

Feedback (ACK, confirmation, rejection)

Result

@berndruecker



Synchronous blocking behavior for the result?

Bad user experience
Does not scale well

@berndruecker



Scalable Coffee Making
https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

Photo by John Ingle

@berndruecker

https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html
http://www.sheppard.af.mil/News/Photos/igphoto/2001871578/


Only the first communication step is synchronous

Pizza 
Place

You

PUT /order

HTTP 200

Pizza Delivery

The task of
Pizza making is
long running

@berndruecker



Example: Build a pizza ordering app

PUT /order

HTTP 200: 
„Got your order. Should
be delievered in roughly

41 minutes.“

Pizza Delivery 
System

@berndruecker



Command vs. event-based communication

Pizza 
Place

You

I order this pizza

OK – got it

Command = Intent
Cannot be ignored
Independant of communication channel

Pizza 
Place

You

„Hey – I am hungry!“

Event = Fact
Sender can't control what happens

@berndruecker



Definitions

Event = Something happened in the past. It is a fact.
Sender does not know who picks up the event.

Command = Sender wants s.th. to happen. It has an intent.
Recipient does not know who issued the command.

@berndruecker



Events vs. Commands

„Pizza Salmon 
is ready!“

I baked this pizza for Andrea. 
Please package it immediately and 

deliver it while it‘s hot!

@berndruecker



Orchestrator

Command

@berndruecker



Example: Build a pizza ordering app using events

PUT /order

HTTP 200: 
„Got your order. Should
be delievered in roughly

41 minutes.“

Pizza Delivery 
System

Hey – somebody
ordered

Hey – Pizza is
readyI have a Pizza

for you

@berndruecker



PUT /order

HTTP 200: 
„Got your order. Should
be delievered in roughly

41 minutes.“

Pizza Delivery 
System

Hey – somebody
ordered

Hey – Pizza is
readyI have a Pizza

for you

How do I make sure the 
Pizza is not forgotten?

Example: Build a pizza ordering app using events
@berndruecker



Example: Build a pizza ordering app via orchestration

PUT /order

HTTP 200: 
„Got your order. Should
be delievered in roughly

41 minutes.“

Pizza Delivery 
System

But how to implement 
long-running things?

@berndruecker



bernd.ruecker@camunda.com
@berndruecker
http://berndruecker.io/

Bernd Ruecker
Co-founder and 
Chief Technologist of
Camunda

http://berndruecker.io/


An workflow engine provides long running capabilities

Workflow Engine

Scheduler

Durable State

Process Definitions

V1
V2

Workflow Engine:

Is stateful

Can wait
Can retry
Can escalate
Can compensate

Provides visibility

@berndruecker



A possible process for the Pizza ordering system
@berndruecker



You can still work with events
Pizza xy was picked

up by driver z
Driver z handed over

Pizza successfully

@berndruecker



Advantages
@berndruecker

Visibility: What‘s the
current status?

Visibility: History and 
audit trail

Time-out handling
/ escalation

Long running: Waiting 
for events to happen



Your code to provide a REST endpoint

Developer-friendly 
workflow engines

@PutMapping("/pizza-order")
public ResponseEntity<PizzaOrderResponse pizzaOrderReceived(...) {
HashMap<String, Object> variables = new HashMap<String, Object>();
variables.put("orderId", orderId);

ProcessInstanceEvent processInstance = camunda.newCreateInstanceCommand()
.bpmnProcessId("pizza-order") 
.latestVersion() 
.variables(variables) 
.send().join();

return ResponseEntity.status(HttpStatus.ACCEPTED).build();
}

@berndruecker



Orchestration vs. Choreography
@berndruecker



Definition

Orchestration = command-driven communication

Choreography = event-driven communication

@berndruecker



Let‘s switch examples: Order fulfillment

Checkout

Payment

Inventory

Shipment

Order 
placed

Payment 
received

Goods
shipped

Goods
fetched

@berndruecker



Event chains

Checkout

Payment

Inventory

Shipment

Order 
placed

Payment 
received

Goods
shipped

Goods
fetched

@berndruecker



Phil Calcado at QCon NYC 2019

https://twitter.com/pcalcado


Notification

Checkout

Payment

Inventory

Shipment

@berndruecker

Pinball Machine Architecture

@berndruecker

https://twitter.com/berndruecker/


Order
Fulfillment

Orchestration and Choreography

Checkout

Payment

Inventory

ShipmentPayment
received

Order 
placed

Retrieve
payment

@berndruecker

This is
choreography

This is
orchestration



Order
Fulfillment

Checkout

Payment

Inventory

Shipment

@berndruecker



Order
Fulfillment

Collaboration style is independant of communication style

Checkout

Payment

Inventory

ShipmentPayment
received

Order 
placed

Retrieve
payment

@berndruecker

Choreography

Orchestration

Asynchronous
non-blocking

Asynchronous
non-blocking

Synchronous
blocking



Checkout Order Payment

Event-driven:
Decision to couple is on the receiving side

Command-driven
Decision to couple is on the sending side

Direction of dependency

Retrieve 
Payment

Order
placed

Payment 
received

Direction of dependency



Now it is easy to change the process flow

@berndruecker



Processes are domain logic and live inside service boundaries
@berndruecker



Orchestration is not centralized

Microservice A

Camunda

Microservice B Microservice C

Camunda
Ideally SaaS
(probably self-managed)

Every microservice (process solution) owns its process model, glue code, and any additional artifacts

Camunda



Self-service control plane



Some code?

https://github.com/berndruecker/flowing-retail/tree/master/kafka

@berndruecker

https://github.com/berndruecker/flowing-retail/tree/master/kafka


Sam Newman: Building Microservices

@berndruecker



Mix orchestration and choreography

Orchestration

Orchestration

Orchestration

Choreography

@berndruecker



Want to learn more about choreography vs. orchestration?

https://learning.oreilly.com/library/view/practical-process-automation/9781492061441/
30 days trial: https://learning.oreilly.com/get-learning/?code=PPAER20

Recording from QCon: https://drive.google.com/file/d/1IRWoQCX-gTPs7RVP5VrXaF1JozYWVbJv/view?usp=sharing
Slides: https://www.slideshare.net/BerndRuecker/gotopia-2020-balancing-choreography-and-orchestration

https://learning.oreilly.com/library/view/practical-process-automation/9781492061441/
https://learning.oreilly.com/get-learning/?code=PPAER20
https://drive.google.com/file/d/1IRWoQCX-gTPs7RVP5VrXaF1JozYWVbJv/view?usp=sharing
https://www.slideshare.net/BerndRuecker/gotopia-2020-balancing-choreography-and-orchestration


Communication Options – Quick Summary

Communication 
Style

Synchronous
Blocking

Asynchronous
Non-Blocking

Collaboration
Style

Command-Driven Event-Driven

Example REST
Messaging 
(Queues)

Messaging 
(Topics)

Feedback Loop
HTTP 

Response
Response 
Message

-

Pizza Ordering via Phone Call E-Mail Twitter

This is not the
same!

@berndruecker



Coupling



Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

@berndruecker



Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

@berndruecker



Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on 
availability of other
services

Synchronous blocking
communication

Reduce or manage

@berndruecker



Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on 
availability of other
services

Synchronous blocking
communication

Reduce or manage

@berndruecker



Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on 
availability of other
services

Synchronous blocking
communication

Reduce or manage

Deployment Coupling Multiple services can only
be deployed together

Release train Typically avoid, but 
depends

@berndruecker



Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on 
availability of other
services

Synchronous blocking
communication

Reduce or manage

Deployment Coupling Multiple services can only
be deployed together

Release train Typically avoid, but 
depends

@berndruecker



Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on 
availability of other
services

Synchronous blocking
communication

Reduce or manage

Deployment Coupling Multiple services can only
be deployed together

Release train Typically avoid, but 
depends

Domain Coupling Business capabilities
require multiple services

Order fulfillment requires
payment, inventory and 
shipping

Unavoidable unless you
change business
requirements or service
boundaries

@berndruecker



Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on 
availability of other
services

Synchronous blocking
communication

Reduce or manage

Deployment Coupling Multiple services can only
be deployed together

Release train Typically avoid, but 
depends

Domain Coupling Business capabilities
require multiple services

Order fulfillment requires
payment, inventory and 
shipping

Unavoidable unless you
change business
requirements or service
boundaries

@berndruecker



Type of coupling Recommendation

Implementation Coupling Avoid

Temporal Coupling Reduce or manage

Deployment Coupling Typically avoid, but 
depends

Domain Coupling Unavoidable unless you
change business
requirements or service
boundaries

The communication style can reduce temporal 
coupling

Some people refer to this, when they say that event-
driven systems decouple better.
But in reality, it just turns the direction of the
dependency around.
The collaboration style does not decouple!



Messaging?
@berndruecker



Patterns To Survive Remote Communication
Service 

Consumer
Pattern/Concept Use With

Service 
Provider

X Service Discovery Sync (X)

X Circuit Breaker Sync

X Bulkhead Sync

(X) Load Balancing Sync X

X Retry Sync / Async

X Idempotency Sync / Async X

De-duplication Async X

(X) Back Pressure & Rate Limiting Sync / (Async) X

X Await feedback Async

X Sagas Sync / Async (X) …

@berndruecker



Summary

• Know
• communication styles (sync/async)
• collaboration styles (command/event)

• You can get rid of temporal coupling with asynchronous communication
• Make sure you or your team can handle it
• You will need long running capabilities (you might need it anyway)
• Synchronous communication + correct patterns might also be OK

• Domain coupling does not go away!

@berndruecker



Want to learn more…

https://ProcessAutomationBook.com/

https://processautomationbook.com/


Thank you!

@berndruecker


