
 
Modern Java

Ron Veen

Java Forum Stuttgart 2023

Who is Ron Veen

@ronveen
ronveen @ronveen@foojay.social

● Java developer for 20+ years

● Special Agent @ Team Rockstars IT

● Writing a book about Migrating to cloud-native Jakarta EE

mailto:ronveen@foojay.social

Agenda

1. Virtual threads, structured concurrency, scoped values

2. What else is in Java 21

3. Records, sealed classes and pattern matching

4. Examples of data-oriented programming with Java

Part 1 - Virtual Threads, Structured Concurreny, Scoped Values

Java Threads

Virtual Threads

Factory methods

Virtual Thread Per Task Executor

Structured Concurrency

Invoke All pattern

Invoke Any pattern

Thread Locals

1. Share information between different components of your application

2. Create a ThreadLocal instance that is reachable from anywhere

3. You can provide an initial value on creation

4. Or set a value using set (T value)

5. Retrieve the value anywhere via get()

The problem with Thread Locals

1. Mutable

2. Resource intensive

3. Leaking

Enter Scoped Values

1. Exist for a limited time (lifetime of the Runnable)

2. Only the thread that wrote the value can read it

3. Immutable

4. Passed by reference

Scoped Values

Part 2 - What else is in Java 21

Agenda

1. Simpler main methods

2. Unnamed classes

3. Unnamed variables

4. Sequenced Collections

5. String Templates

Simpler main methods

Unnamed classes

Unnamed variables

Unnamed variables

Unnamed variables

Sequenced Collections

Sequenced Collections

String templates

String templates

String templates

Part 3 - Records, sealed classes and pattern matching

Modern Java support for data-oriented programming

● Records

● Sealed classes

● Pattern matching

● Switch functions for pattern matching

Records

Sealed classes

Pattern Matching

● Predicate

● Object to test against

● Pattern variables

● Flow scope

Pattern Matching: Instanceof

● Predicate ==> instanceof Approver

● Object to test against ==> user

● Pattern variables ==> a

● Flow scope ==> between { }

Pattern Matching: switch

Pattern Matching: record

Part 4 - Combining Java and data-oriented programming

Data-oriented programming

Principles of data-oriented programming

● Separate data from logic

● Data is stored in generic data structures

● Data is immutable

Alternative optional

Usage of data-oriented programming

Summary

● Data-oriented programming treats data as first-class citizens

● Data drives your application

● Java supports data-oriented programming via records, sealed classes and pattern matching

Questions

