What does it
take to deploy to
production with
confidence?

Ixchel Ruiz

JAVA

Ixchel Ruiz

l KaRrRaKun

AT Things Exery
Java Programmer

Should eow

linkedin.com/in/ixchelruiz
@ixchelruiz@mastodon.social

o . . Dvueva s Tools
@ixchelruiz.bsky.social o
github.com/ixchelruiz A

56090 cd

What does It take to
deploy to production
with confidence?

DEPLOY

Artifacts

Confidence

Release

Deploy to Production

. g
LN

oo |
= 56 ong, o |
-?1; sara |

Artifacts

T

y

=

il
J-A-L-.;-.A-ss‘ "

, ff‘"” b
'

|

Deploy

Process

Process - (How we build) - Artifacts

Cl/CD Reproducible
> CD Foundatio Builds

cd oS

Continuous
Delivery
Foundation

Best Practices

About Learn Architecture Community

Resources English ~

Learn

Where to Start?
Team culture
Version Control

Continuous
integration

Continuous
deployment

Continuous testing

Software Supply
Chain

Configuration
management
Assess your current
state
Domain-specific
practices

Best Practices in Action

Repeatability

The deployment process must be repeatable across all stages of the pipeline. To
achieve repeatability, values that are specific to an environment should be
separated from the deployment tasks. This allows the logic of the deployment to
remain consistent, while the values change according to the endpoint.

Automation to Reduce One-Off
Scripting

Continuous deployment requires the ability to scale quickly. This means that the
reliance on deployment scripts can impede scaling of your release process. To
avoid the reliance on scripts, the process should include a set of reusable tasks,
components and functions that can define a templated approach to
deployments.

Environment Modeling

A logical view of your endpoints, their use, ownership and capabilities is
essential for defining your release landscape and creating a reference for
automated deployments. Reporting on the Environment configurations is
required for abstracting the differences between any two environments - a
process required for debugging when a deployment does not perform as
expected based on metrics defined in a previous environment.

B View page source
Edit this page

Create child page
7= Create
documentation issue
& Print entire section

Repeatability
Automation to Reduce
One-Off Scripting

Environment Modeling

Approval and Approval
Gates

Release Coordination
and Auditing

Inventory Tracking

Calendar and
Scheduling

Immutable Deployments
Deployment Models
Push Vs. Pull

Policies

Tag Cloud

assess 1 learn 1

Categories

Assess 1 Learn 1

ca Continuous Deployment

Automation to
Repeatability Reduce One-
Off Scripting

Release
Coordination
and Auditing

Inventory
Tracking

Environment
Modeling

Immutable
Deployments

Approval and
Approval
Gates

Deployment
Models

O

> j Continuous Deployment

6 Rep eata bility Deployment process repeatable across all stages of the pipeline

f? Automation to Reduce One-Off Scripting Ability to scale quickly. Set of reusable tasks, components and functions in templates
Environment Modeli ng Logicalview of endpoints, use, ownership and capabilities

a Approval and Approval Gates Restricting access to lifecycle. Notification and approvalthat a new release

? Release Coordination and Auditing Audit log (who, when and where) an update occurred.

§ Inve ntory Tra cking Recording location of any artifact deployed to any location in an environment.

1 Immutable Deployments Al release metadatato and logic to be maintained in an immutable state

%W De ployment Models Canary deployments, blue/green deployments and rolling blue/green deployments

Oftia0

Repeatable
VS
Reproducible

Artifacts A build

. Is reproducible if given
(Reprodumble the same source code,

Builds) build environment and
build instructions, any
party can recreate bit-
by-bit identical copies
of all specified artifacts.

ini Reproducible
“a.¢’ Builds

Reproducible builds are a set of software development practices that create an
independently-verifiable path from source to binary code. (more)

l#.Fork me on GitHub

Reproducible Build Maven Plugin

Reproducible Build Maven Plugin / Introduction $i18n.getString("site-renderer", $locale, "template.lastpublished"): $dateValue

OVERVIEW

Goals

Usage

FAQ

PROJECT

DOCUMENTATION

Project Information
Dependencies

Dependency
Information

Distribution
Management

Issue
Management

Licenses
Plugin
Management
Plugins
Source Code
Management

Summary
Team

Project Reports

$i18n.getString("site-renderer”, $locale, "template.version"): 0.16

Reproducible Build Maven Plugin

Have you ever tried to compile twice the same sources with Maven and compared the hashes of the generated artifacts? They are not the same! Maven is
not able to build an artifact in a real reproducible (i.e. byte-for-byte) way.

NOTE: Recent versions of the main Maven plugins have been modified to allow reproducible builds without the use of this plugin. See Configuring for
Reproducible Builds @ for more details.

This Maven plugin tries to strip "non reproducible" data from the generated artifacts. It follows the same goals as Debian's Reproducible Builds project @
but at the modest scale of a Maven project. You can also have a look at my Devoxx France 2016 talk "Bit-for-bit reproducible builds with Maven @".

Using this plugin is a no-brainer: simply add it to your pom and it will try to "automagically" make the build byte-for-byte reproducible.

NOTE: This plugin requires Java 8 or later. l . l

Goals Overview ®

There are several goals: ‘ ‘

» The "strip-jar" goal processes all the ZIP/JAR/WAR/EAR files found in the target repository and does the following things: .
o sorts ZIP entries by name,
o replaces file timestamps in ZIP entries with a fixed value,
© removes timestamps, user names and tool versions in MANIFEST.MF,
© removes comments in pom.properties file (some of them can contain time/date).

NOTE: As of version 0.5, the "strip-jar" goal also processes TAR/TAR.GZ/TAR.BZ2 files.

« The "strip-jaxb" goal normalizes ObjectFactory.java files generated by the JAXB xjc tool (before JAXB 2.2.11, xjc generates ObjectFactory.java files
where the methods are put in a non-predictable order, which produces non-reproductible class files. Cf. issue JAXB-598 §).

If you find other interesting sources of "non reproducible” data that this plugin could remove, please open a ticket in the bug tracker or send a pull request.

Please note that you must use the same compiler (and possibly Maven) version to get the same results. You can use the maven-enforcer-plugin for that, or
use a tool like moot @ to download and use the JDK and Maven versions people need to use for the build.

Languages
[0 README & Code of conduct

Shell 100.0%

Reproducible Builds for Maven Central Repository

This project is the Java part of the Reproducible Builds effort:

¢*2_ Reproducible
“a¢® Builds

binary code

Its objectives are to provide: Ma vanm

1. Tools and methods allowing to verify that Java builds are reproducible

an independently-verifiable path from source to

2. A list of reproducible releases published to Maven Central
rebuilding 4042 releases of 680 projects:
o 3217 releases are confirmed fully reproducible (100% reproducible artifacts i),

o 825 releases are only partially reproducible (contain some unreproducible artifacts .!.)

o on 680 projects, 579 have at least one fully reproducible release, 101 have none

Rebuild Detailed Results @VEH central repository
Central Repository groupld artifactld(s) versions reprroﬁc:
biz.aQute.bnd bnd-plugin-parent 9 9
ch.gos.logback logback-parent 23 1684/
ch.gos.reload4j reload4j 8 18/7
ch.gos.logback.db logback-parent-db 1 14
ch.vorburger.mariaDB4j mariaDB4j 1 1

ram flawlaniv flawilnniv 14 1n 94 |

SOURCE THREATS BUILD THREATS

4 &4 4 4 4 4 4

Producer —— Source ———(Build)————| Package |—— Consumer

Dependencies

>

L J
DEPENDENCY THREATS

SOURCE THREATS DEPENDENCY THREATS BUILD THREATS

A Submit unauthorized change D Use compromised dependency E Compromise build process

B Compromise source repo F Upload modified package

C Build from modified source G Compromise package registry

H Use compromised package

Safeguarding artifact integrity
across any software supply

chain

Supply-chain Levels for
Software Artifacts

It's a security framework, a checklist of standards and
controls to prevent tampering, improve integrity, and secure
packages and infrastructure. It's how you get from "safe
enough" to being as resilient as possible, at any link in the

chain.

ST

Build Level 0
(No guarantees)

 This level doesn't have any requirements nor provides any guarantees.

 This level indicates a lack of SLSA.
 Intended for software development or test builds

Build Level 1
(Provenance exists)

- Organizations are required to maintain a reproducible and consistent build
environment at Build L1.

« Tracking environment modifications and documenting the build
environment are necessary.

« The build environment and inputs must also be identical for the build
process to be replicated.

ST

Build Level 2
(Hosted build platform)

« Requires tamper protection, which includes the use of version control and
a hosted build service to generate provenance.

« The build platform runs on a dedicated infrastructure, not an individual’s
workstation, and the provenance is tied to that infrastructure through a
digital signature.

ST

Build Level 3
(Hardened builds)

 Build and source platforms meet auditing standards and maintain the
integrity of the provenance.

SBOM

* SBOMs (software bill of materials) are structured
documents that inventory the software components

* May communicate information about software
licenses, vulnerabilities, and other metadata relevant
to software transparency.

Table 1: SBOM Type Definition and Composition

SBOM Type | Definition Data Description

Design SBOM of intended, planned software project or product with | Typically derived from a design
included components (some of which may not yet exist) for a | specification, RFP, or initial concept.
new software artifact.

Source SBOM created directly from the development environment, Typically generated from software
source files, and included dependencies used to build an composition analysis (SCA) tooling,
product artifact. with manual clarifications.

Build SBOM generated as part of the process of building the Typically generated as part of a
software to create a releasable artifact (e.g., executable or build process. May consist of
package) from data such as source files, dependencies, built | integrated intermediate Build and
components, build process ephemeral data, and other Source SBOMSs for a final release
SBOMs. artifact SBOM.

Analyzed SBOM generated through analysis of artifacts (e.g., Typically generated through
executables, packages, containers, and virtual machine analysis of artifacts by 3rd party
images) after its build. Such analysis generally requires a tooling.
variety of heuristics. In some contexts, this may also be
referred to as a “3rd party” SBOM.

Deployed SBOM provides an inventory of software that is present on a | Typically generated by recording the
system. This may be an assembly of other SBOMSs that SBOMSs and configuration
combines analysis of configuration options, and examination | information of artifacts that have
of execution behavior in a (potentially simulated) deployment | peen installed on systems.
environment.

Runtime SBOM generated through instrumenting the system running | Typically generated from tooling

the software, to capture only components present in the
system, as well as external call-outs or dynamically loaded
components. In some contexts, this may also be referred to
as an “Instrumented” or “Dynamic” SBOM.

interacting with a system to record
the artifacts present in a running
environment and/or that have been
executed.

CYBERSECURITY &
INFRASTRUCTURE
SECURITY AGENCY

*
* *

Commissi

Cyber Resilience Act Requirements
Standards Mapping

Joint Research Centre & ENISA Joint Analysis

ISSN 1831-9424
*
* *
, enisa m
T
x * FOR CYBERSECURITY

Cyber Resilience Mt\

2024-04-04 '

* Manufacturers of the products
with digital elements shall:

* |[dentify and document
vulnerabilities and components
contained in the product

« Software Bill Of Materials

) All Systems Operational

Documentation Q_ Search

Getu ng Sta rted Table of contents

Introduction

Initial Setup
lntrOd UCtIOﬂ Review Requirements
Deployment
Sonatype OSSRH (OSS Repository Hosting) uses Sonatype Nexus Repository Manager to provide Releasing to Central
repository hosting service for open source project binaries - be sure to review the full terms of service. OSSRH Usage Notes
OSSRH uses the Maven repository format and allows you to: Accessing Repositories
¢ deploy development version binaries (snapshots)
e stage release binaries
» promote release binaries and sync them to the Central Repository
& Once released/published, you will not be able to remove/update/modify that artifact
H We provide the option to publish artifacts using the -SNAPSHOT suffix in case that you need to do any test on your publishing
rﬂ aue n Ce nt ra I re DDS ito ry process, but once it is released there is no possibility to change it. Please check the Can | change (modify, delete, update) a
component on Central? FAQ for more details.
The initial setup for your OSSRH repository requires some manual steps and human review (see why),
after which your deployment process is typically modified to get components into OSSRH. These are
all one time steps.
After the initial setup, publishing from OSSRH to Central is a trivial action which can be done via a
browser or programmatically.
Initial Setup R

Ask Central

Review Requirements

MACIEJ WALKOWIAK Home Blog

How to publish a Java library to Maven Central -
Complete Guide

November 7, 2022

JAVA MAVEN JRELEASER m

This is an opinionated step-by-step guide on how to publish Java library to Maven Central repository.

It assumes that:

» the project is built with Maven (small modifications would be needed for Gradle)

« the project code is hosted on GitHub and GitHub Actions are used to trigger the release

All sample Maven invocations use Maven Wrapper (./mvnw) - either generate wrapper files with mvn

wrapper:wrapper or just remember to use mvn instead of ./mvnw when following this tutorial

It uses JReleaser - | believe this is the simplest and the most straightforward way of signing and uploading

artifacts.

This guide is based on Official guide from Sonatype but thanks JReleaser some steps are either heavily simplified

or completely eliminated.

1. 1. Create an account in Sonatype JIRA

2. Create a "New Project" ticket

1. If a custom domain is used as a group id

2. If GitHub is used as a group id

£ O v o

On this page
1. Create an account in Sonatyp...
Create a "New Project" ticket
If a custom domain is used a...
If GitHub is used as a group id
Set ticket to "Open"
3. Create GPG keys
3.1 Export key to a key server
4. Export public and secret key ...
4.1. Create GitHub secrets with Ul
4.2. Create secrets with GitHub...
5. Adjust pom.xml
5.1. Generate javadocs and sour...
5.2 Configure JReleaser Maven ...
6. Create a GitHub action
7. Get familiar with Sonatype Ne...
8. When is the library actually a...

Conclusion

MACIEJ WALKOWIAK Home Blog

This guide is based on Official guide from Sonatype but thanks JReleaser some steps are either heavily

simplified or completely eliminated.

1. 1. Create an account in Sonatype JIRA

2. Create a "New Project" ticket

1. If a custom domain is used as a group id

2. If GitHub is used as a group id

3. Set ticket to "Open"
. 3. Create GPG keys

3
4. 3.1 Export key to a key server
5

. 4. Export public and secret key to GitHub secrets

6. 4.1. Create GitHub secrets with Ul
7. 4.2. Create secrets with GitHub CLI

8. 5. Adjust pom.xml

@ven central repository

9. 5.1. Generate javadocs and sources JARs

10. 5.2 Configure JReleaser Maven Plugin

11. 6. Create a GitHub action

12. 7. Get familiar with Sonatype Nexus Ul

13. 8. When is the library actually available to use?

14. Conclusion

1. Create an account in Sonatype JIRA

Sign up in Sonatype JIRA.

Build Tools

S
Maven

&t Services

OO

TReleaser

ar iy ‘..'i] D o

Packagefs

AN

/

Y K.

Announce Channels

, e A

-

JReleaser

Release automation tool.

Simplify creating releases and
publishing artifacts to
multiple package managers.

hacd deperdency Full Rel
— clease
soft dependenc
Pt ddeperdency
Release — - Publish Announce
]
|
|
I
bq,[o? Uplocwl :
I
1
1
I
/ |
I
Sisn Paekage :
|
I
|
l
I
Co\'to.log :
l
I
|
/ / :
I
Assemble < b _‘ Checksum = Prepare :
— . :
P T e e e EEE L PP L L L LR R T : :
VAR :
Download [< _____________ c"“""ﬂd"? < i
:
1

'S KaRaKun

JReleaser l

* Create Git releases (tag,
changelog, assets),

« Announce releases,

« Assemble additional binaries
and files

 Publish to several package
managers

JReleaser JReleaser

Download « Codeberg
¢ Generic git

! IMPORTANT

The generic releaser does not support all features.

Files may be downloaded from the following services:

e Fip
* Generic HTTP/HTTPS

s Scp
. Sftp Catalog

Assembled artifacts, distribution artifacts, and files may be cataloged:

Assemble SBOM

Distributions may be assembled using your build tool of choice, also with any of the * CycloneDX

following assemblers: o Syft

¢ Archive Provenance

« Java Archive ¢ Github Attestation

» Jlink « SLSA

« Jpackage Tracking

« Native Image * SWID

Release Deploy

Staged artifacts may be deployed to the following services:

Releases may be posted to the following services:

e GitHub Maven

) « Artifactory
« GitLab
e Azure
* Gitea

A @
Gitea Asdf
Gitlab Chocolatey
Github Docker
MavenCentral Flatpak

Nexus? * Homebrew

+ JBang

Upload . Jib

* Macports
Artifacts, checksums, signatures may be uploaded to the following services:
* Scoop

« Artifactory ¢ Sdkman

* Ftp « Snap

* Gitea « Spec

» GitLab » Winget

¢ Generic HTTP/HTTPS
« AWS S3

Announce
* Scp

Sftp Releases may be announced using the following tools and communication channels:
L]

Article

Package & Publish Bluesky

Discord
Distributions may be packaged and published with the following tools:

Discourse

* Applmage GitHub Discussions

* Asdf Gitter

JReleaser Q Search [

0]
Announce

Releases may be announced using the following tools and communication channels:

Article
Bluesky
Discord
Discourse
GitHub Discussions
Gitter
GoogleChat
Linkedin
Http
Mastodon
Mattermost

* OpenCollective

* Sdkman

» Slack

* Smtp

e Teams

o Telegram

o Twitter

» Webhooks

e Zulip

@ sigstore Overview Community How sigstore works Trust and security Blog Docs & O

sign. verify. protect.

Making sure your software is what it claims to be.

In collaboration with

5 ==
#f:' anﬂSSF B G |8 | ' 1l ' e 0 Go gle HewlettPackard J =) PURDUE ‘ RedHat 4 ¥ stacklok vmware
= CISCO Enterprise

@ sigstore Overview Community How sigstore works

We've combined a few technologies that can be used
independently, or as one single process. It's a way for software
developers to sign off on what they build, without needing to
jump through hoops or know tricky security protocols. And it's a
way for anyone using those releases to verify the signatures
against a tamper-proof log.

&

Sign Verify

Easy authentication and Transparency logs store

smart cryptography work in
the background. Just push
your code, sigstore can
handle the rest.

Learn more (4

unigue identification like who
created it and where it was
built, so you know it hasn't
been changed when you
verify.

Learn more (4

Trust and security Blog Docs &

Monitor

Data stored in the logs is
readily auditable, a
foundation for future
monitors and integrations to
build into your security
workflow.

Learn more [

(%)

What's behind the scenes?

Cosign

For signing and verification of artifacts and
containers, with storage in an Open Container
Initiative (OCI) registry, making signatures and
in-toto/SLSA attestations invisible
infrastructure.

View the repo [

Policy Controller

Policy Controller is used to enforce policy on a
cluster on verifiable supply-chain metadata
from Cosign.

View the repo (4

Fulcio

Code-signing certificate authority, issuing
short-lived certificates to an authenticated
identity and publishing them to a certificate
transparency log.

View the repo [

Rekor

Append-only, auditable transparency log
service, Rekor records signed metadata to a
ledger that can be queried, but can’t be
tampered with.

View the repo [

OpenlID Connect

An identity layer that checks if you're who you
say you are. It lets clients request and receive
information about authenticated sessions and
users.

Learn more (4

Trust root

The foundation for trust underpinning Sigstore
utilizes TUF. This repository describes this
process, our keyholders, and how the root
keys are protected.

Sigstore's trust root (4

PUBLISH SIGNED
ARTIFACT

FIND/DOWNLOAD
ARTIFACTS

SIGNED ARTIFACT

AUTHENTICATE
WITH OPEN ID
CONNECT

R R
FULCIO CHECK
DEVELOPERS REQUEST CERTIFICATE PgIBGLILSI::s REKOR SIGNATURES END USERS
CERTIFICATE

TRANSPARENCY LOG

AUTHORITY CERTIFICATE IN LOG

[SE]
\/
PROVIDES CHECK THAT
SIGNING MONITORS TRUST ROOT SIGNING PARTY IS

CERTIFICATE IN TRUST ROOT

Artifacts (What has changed)

Changelog
« Keep the changelog up to date
« Show version and date in release header
« Group similar changes into categories
« Communicate relevant changes
 Highlight critical changes
« Breaking changes
« Binary incompatibility
« Deprecations

- Conventional Commits

A Karakun

linkedin.com/in/ixchelruiz

@ixchelruiz@mastodon.social
@ixchelruiz.bsky.social

github.com/ixchelruiz

	Slide 1: What does it take to deploy to production with confidence?
	Slide 2: Ixchel Ruiz
	Slide 3: What does it take to deploy to production with confidence?
	Slide 4: DEPLOY
	Slide 5
	Slide 6: Confidence
	Slide 7: Deploy to Production
	Slide 8: Artifacts
	Slide 9: Deploy
	Slide 10: Process - (How we build) - Artifacts
	Slide 11
	Slide 12
	Slide 13: Continuous Deployment
	Slide 14: Continuous Deployment
	Slide 15: Repeatable vs Reproducible
	Slide 16: Artifacts (Reproducible Builds)
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Supply-chain Levels for Software Artifacts
	Slide 23: Build Level 0 (No guarantees)
	Slide 24: Build Level 1 (Provenance exists)
	Slide 25: Build Level 2 (Hosted build platform)
	Slide 26: Build Level 3 (Hardened builds)
	Slide 27: SBOM
	Slide 28
	Slide 29: Cyber Resilience Act
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: JReleaser
	Slide 35
	Slide 36: JReleaser
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Artifacts (What has changed)
	Slide 45

