
To the Cloud with Crosswind
Breaking down a monolith to microservices with the strangler pattern

© 2023 NTT DATA Corporation



Java Developer and Application Architect at NTT DATA

I am a Java developer for 12 years with focus on Java 

Enterprise back-end development. With time I’ve noticed I have 

a knack for understanding complex systems and have thus 

shifted my attention to architecture and the evolution of 

complex systems over time. In my spare time I enjoy hiking and 

landscape photography.

Who am I?

2



Let’s take a journey to the cloud!

© 2023 NTT DATA Corporation3



How it all started

© 2023 NTT DATA Corporation4



How it’s going

© 2023 NTT DATA Corporation5



T
O
P
IC

S

Microservices1 Data or code? What do I split 
first?6

Monolith2 Dealing with new features7
Are microservice the right choice?3 People, Tools and Processes8
Splitting the monolith4 Summary and Conclusion9
Splitting the database5 Questions10

6



Microservices
What are they and how can they help?

7



8

What defines a microservice?

Independently 

deployable Loosely coupled

Modelled around a 

business domain

Owners of their data



Microservices - The good and the bad

▪ Independently deployable

▪ Scalable

▪ Robust

▪ Easy to understand

▪ Easy to change

▪ Allow for different technological choices

▪ Communication over network

– Latency

– Failure handling

▪ Complex interactions

▪ Complex transaction handling

▪ Question of ownership

▪ Prone to cargo cult programming

9

Keyword: Flexibility

Keyword: Overhead



Doesn’t matter!

© 2023 NTT DATA Corporation

How small is a microservice?

10

Focus on:

Independent deployability

Loose coupling

Modeling around business domain

Data ownership



Monolith
Should we really bury it in programming history?

11



▪ Single unified software application

▪ Self-contained and independent

▪ Single unit of deployment

© 2023 NTT DATA Corporation

What is a monolith?

12



Types of Monoliths

▪ Single process monolith

▪ Modular monolith

▪ Distributed monolith

▪ 3rd party blackbox

© 2023 NTT DATA Corporation13

Sam Newman "Monolith to Microservices" (O'Reilly Media, Inc.)

Modular monolith

Distributed monolith

https://samnewman.io/books/monolith-to-microservices/


Monolith - The good and the bad

▪ Easy to deploy

▪ Easy E2E testing

▪ Simplifies code reuse

▪ Less architectural overhead

▪ Less infrastructure overhead

▪ Coupling and cohesion

▪ Stepping on others’ feet

▪ Ownership

▪ Single technology stack

▪ Difficult to understand

▪ Difficult to change

14

Keyword: Less overhead

Keyword: Complexity



Decisions
Should I switch to a microservice architecture?

15



© 2023 NTT DATA Corporation16

https://www.thestack.technology/amazon-prime-video-microservices-

monolith/

https://thenewstack.io/return-of-the-monolith-amazon-dumps-

microservices-for-video-monitoring/

https://amplication.com/blog/amazon-ditches-microservices-for-monolith-

decoding-prime-videos-architectural-shift

https://www.primevideotech.com/video-streaming/scaling-up-the-

prime-video-audio-video-monitoring-service-and-reducing-costs-by-

90

https://www.zensoftware.nl/en/news/amazon-prime-

video-swaps-microservices-for-monolith-90-cost-reduction

https://www.thestack.technology/amazon-prime-video-microservices-monolith/
https://thenewstack.io/return-of-the-monolith-amazon-dumps-microservices-for-video-monitoring/
https://amplication.com/blog/amazon-ditches-microservices-for-monolith-decoding-prime-videos-architectural-shift
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.zensoftware.nl/en/news/amazon-prime-video-swaps-microservices-for-monolith-90-cost-reduction


© 2023 NTT DATA Corporation17

So, why still choose microservices?

Switching to a microservice architecture must be a conscious and 

deliberate decision.



So, why still choose microservices?

Good reasons
▪ Team autonomy

▪ Improve scaling and robustness

▪ Faster and more granular rollouts

▪ Resource distribution

▪ Improve efficiency with use of new technology

Bad reasons
▪ Expected increase in performance

▪ Don’t understand domain

▪ Working in/for a small company

▪ It’s industry standard

▪ I’ve been told to do it

18



19

Distribute system load

Update technology stack

Reduce resource contention

Improve developer experience

Improve robustness

My decision process



Splitting the Monolith
This is where the fun starts

20



▪ Start small and work in iterations

▪ Identify domains and boundaries

▪ Prioritize simple and well isolated modules

▪ Consider starting with a modular monolith

▪ Favor copying over cutting or reimplementing

▪ Favor moving new functionality to microservices

▪ Evaluate your progress constantly

▪ Improve based on previous experience

Where to start?

21 © 2023 NTT DATA Corporation



• Different department required access to monolith functionality

• Extracted functionality and provided it to the new consumer

• Existing consumer was still using monolith

• Eventually switched all consumers to new service

Reusable configuration calculator

• Monolith was storing special audit logs

• Customer required long term storage of audit logs

• Archiver implemented as service separate from monolith

Log Archiver

Examples

© 2023 NTT DATA Corporation22



▪ Term initially used by Martin Fowler to describe this pattern

▪ Type of fig that wraps around host tree replacing it in the end

▪ In Software:

– The new system is initially supported by the existing monolith

– Old and new coexist until eventually the old gets replaced

▪ Great for extracting externally exposed modules

© 2023 NTT DATA Corporation

Patterns: Strangler Fig Application

https://martinfowler.com/bliki/StranglerFigApplication.html

23

https://martinfowler.com/bliki/StranglerFigApplication.html


© 2023 NTT DATA Corporation24

Patterns: Strangler Fig Application
Step by step

1. Decide what to module to extract

2. Extract the module as a microservice

3. Redirect calls to the new module



▪ Incremental approach to monolith split

▪ Allows deployment and release separation

▪ Fallback to original implementation possible anytime

▪ Microservice validation is easy 

Patterns: Strangler Fig Application

25 © 2023 NTT DATA Corporation

Benefits



© 2023 NTT DATA Corporation26

Patterns: Strangler Fig Application
Implementation Examples

▪ HTTP Reverse Proxy

– Insert a reverse proxy between clients and monolith

– Redirect the calls via the proxy when going live with the 
microservice

– Clients only need to change at most once to the proxy

▪ Message Interceptor

– Based on Queues and Topics

– Simple if infrastructure already in place

– Decoupled approach simplifies pattern application



▪ Forgetting about added latency

▪ Creating complex logic in the middleware

▪ Creating your own proxy

© 2023 NTT DATA Corporation

Patterns: Strangler Fig Application

27

Common Pitfalls



▪ Aimed at situations where functionality is deep inside the 
monolith

▪ Reduces code contention with other developers

▪ Removes the need for long living branches

© 2023 NTT DATA Corporation

Patterns: Branch by abstraction

28



© 2023 NTT DATA Corporation29

Patterns: Branch by abstraction
Step by step

1. Decide what to extract

2. Create and use abstraction

3. Create new implementation and switch concept

– Switch example: feature flag

4. Clean up



▪ Fallback to original implementation is very simple

▪ Causes minimal disruption

▪ Offers the possibility to shift only parts of the extracted 
module

▪ Great when dealing with background processes(ex. jobs) 
nested inside the monolith

Patterns: Branch by abstraction

30 © 2023 NTT DATA Corporation

Benefits



▪ Runs old and new implementation simultaneously

▪ Useful when dealing with critical functionality

▪ Allows for comparison between existing and new 
implementation

© 2023 NTT DATA Corporation

Patterns: Parallel run

31



© 2023 NTT DATA Corporation32

Patterns: Parallel run
Step by step

1. Both new and old 
implementations are called 
during regular operation

2. Validation module compares the 
results of both implementations

3. Once satisfied with results 
switch to the new 
implementation



Examples: Combining the patterns

© 2023 NTT DATA Corporation33

Strangler Fig Application + Branch by abstraction + Parallel run

▪ Different jobs types running on new and old implementation

▪ Compared results manually using excel

▪ As soon as results were validated all jobs were switched to 
new functionality

Strangler Fig Application + Parallel run

▪ Audit Log archiving is critical

▪ Logs are forwarded both to Monolith as well as Log Archiver 
V2

▪ Log Archiver is still running against the productive storage

▪ Log Archiver V2 is running against a mock so that behavior 
is evaluated



Splitting the Database
So, what about data?

34



▪ Reminder: Microservices own their data

▪ Each Microservice should have its own 
logical database

▪ The database engine can be shared, but not 
the data

▪ Avoid shared databases

© 2023 NTT DATA Corporation

Main things to consider

35



▪ Wait…What!?

▪ Can be a good starting point

▪ Is not a long term solution

▪ Has some very specific cases where it makes sense

▪ However, avoid it if you can

© 2023 NTT DATA Corporation

Patterns: The Shared Database

36



© 2023 NTT DATA Corporation37

Patterns: The Shared Database
Usage scenarios

▪ Static read-only data(ex. Country codes)

▪ The database itself acts as a service

▪ Example: Log Archiver



▪ Specialization of the shared database pattern

▪ Database itself is a part of the distributed service architecture

▪ Database is read-only

▪ Offers high flexibility in data querying

Patterns: DBaaS/CQRS/Reporting DB

38 © 2023 NTT DATA Corporation



▪ Flexible report generation

▪ Data analysis and aggregation

▪ Data curation systems

▪ Can be used together with a database wrapping service

© 2023 NTT DATA Corporation

Patterns: DBaaS/CQRS/Reporting DB
Usage scenarios

39



© 2023 NTT DATA Corporation40

Patterns: DBaaS/CQRS/Reporting DB
Example

▪ Graph database as a service



▪ Application uses two databases to store data

▪ Reads and writes to one DB, only writes to second DB

▪ Very helpful to enable fallback scenarios

▪ Enables change of data ownership

© 2023 NTT DATA Corporation

Patterns: Synchronize data in application 

41



© 2023 NTT DATA Corporation42

Patterns: Synchronize data in application 
Example



© 2023 NTT DATA Corporation43

Splitting the Database

Tables

▪ Look for data belonging to different business areas found in 
the same table

▪ Data should be clearly identifiable via keys

▪ Avoid business keys, use internal keys if required



© 2023 NTT DATA Corporation44

Splitting the Database
Handling Foreign Keys

▪ Database joins need to be done in code

▪ Performance decreases due to network overhead and lower 
performance compared to database engines

▪ Data consistency handling required

– Handle deleted data

– Handle inconsistent data



© 2023 NTT DATA Corporation45

Splitting the Database
Transactions

▪ Transactions maintain the data integrity in complex systems

▪ We always want ACID transactions(atomicity, consistency, isolation, durability)

▪ In distributed system atomicity is not possible

▪ The Saga pattern can be used to handle transactions in distributed system

▪ Handling rollbacks in distributed systems is much more closely related to business 
requirements



▪ Collection of principles and patterns

▪ Helps create models of complex business domains

▪ Brings code together with business reality

▪ DDD Bible: 
Eric Evans, “Domain-Driven Design: Tackling 
Complexity in the Heart of Software”

© 2023 NTT DATA Corporation

Domain-Driven Design

46



Data or Code?
What do I split first

47



© 2023 NTT DATA Corporation48

Data or Code?

▪ Have a very well-known domain

▪ Easiest way to start is using the Multi-Schema pattern

▪ Can be combined well with the modular monolith

Data



▪ When domain is unclear, or no confidence in domain 
knowledge

▪ Easier starting point to extract just functionality

▪ Works well with Aggregate exposing monolith pattern

49 © 2023 NTT DATA Corporation

Data or Code?
Code



Dealing with new 
features
Yes, stakeholders will still want them

50



▪ Evaluate how strongly a new feature is coupled to existing features

▪ Find synergies to logic that could be extracted as a microservice

▪ Always look for simple and ideally harmless changes

▪ Avoid long lived branches, they lead to big bangs

▪ Apply the patterns:

– Strangler Fig

– Branch by Abstraction

– Parallel Run

– Data Synchronization

– Aggregate Exposing Monolith

© 2023 NTT DATA Corporation

Dealing with new features

51



People, Tools and 
Processes
It’s not only the architecture that has to evolve

52



People, Tools and Processes

© 2023 NTT DATA Corporation53



▪ Keep stories small and incremental

▪ Describe the need, the development team has the job to 
decide how to fulfill the need

▪ Stakeholders shouldn’t decide where a feature will be 
implemented, you will end up with a Big Ball of Mud

▪ People(including developers) have a hard time understanding 
the complexity of microservice architectures

© 2023 NTT DATA Corporation

People, Tools and Processes

54

Requirements



▪ Ownership of microservices becomes more complex the 
more microservices you have

▪ Local development complexity, more microservices means 
more overhead to test

▪ Communicating goals clearly and taking transparent 
decisions is important

▪ Interface handling in microservices is complex

▪ Scheduled task handling in replicated systems is more 
complex(SchedLock)

People, Tools and Processes

55 © 2023 NTT DATA Corporation

Development



▪ Test as early as possible

▪ Test automation will give you higher confidence when rolling 
out services

▪ Tester time should be focused on acquiring business 
knowledge and designing tests instead of executing them

▪ Developers need to be closely involved in the testing process

▪ Adopt testing frameworks:

– Newman

– REST Assured

– Locust

© 2023 NTT DATA Corporation

People, Tools and Processes

56

Testing



▪ DevOps is a not just about tools but also a cultural 
philosophy

▪ Developers need to get used to the concept of “you build it, 
you run it”

▪ Automate your release process to reduce your “time to 
market”

▪ Large number of tools available:

– GitHub Actions/GitLab CI/CD

– ArgoCD

– Grafana(incl. Loki and Tempo)

– Dynatrace

– Jaeger

– Istio

People, Tools and Processes

57 © 2023 NTT DATA Corporation

Operations



Summary

58



Summary

© 2023 NTT DATA Corporation59



Summary

© 2023 NTT DATA Corporation60



Summary

© 2023 NTT DATA Corporation61



Questions

62



Alin Vulparu

Contact

63

alin.vulparu@nttdata.com

Tel: +49 151 1634 1269




