o VYT
To the Cloud -
Breakin%wn a mon‘to micros‘es with tl'angler pa

© 2023 NTT DATA Corporation

Who am 1I?

Java Developer and Application Architect at NTT DATA

| am a Java developer for 12 years with focus on Java
Enterprise back-end development. With time I've noticed | have
a knack for understanding complex systems and have thus
shifted my attention to architecture and the evolution of
complex systems over time. In my spare time | enjoy hiking and
landscape photography.

Let's take a journey to the cloud!

3 © 2023 NTT DATA Corporation NTT DaTa

How it all started

© 2023 NTT DATA Corporation NTT DaTa

How it's going

© 2023 NTT DATA Corporation NTT DaTa

SJIdOL

Microservices

Monolith

Are microservice the right choice?

Splitting the monolith

Splitting the database

Data or code? What do | split
first?

Dealing with new features

People, Tools and Processes

Summary and Conclusion

Questions

NTTDaTa

Microservices

What are they and how can they help?

NTTDaTa

What defines a microservice?

Independently

deployable Loosely coupled

Modelled around a Owners of their data

business domain

NTTDaTa

Microservices - The good and the bad

* Independently deployable

= Scalable

= Robust

= Easy to understand

= Easyto change

= Allow for different technological choices

Keyword: Flexibility

= Communication over network
— Latency
— Failure handling
= Complex interactions
= Complex transaction handling
= Question of ownership
= Prone to cargo cult programming

Keyword: Overhead
NTTDaTa

How small is a microservice?

© 2023 NTT DATA Corporation

Doesn’t matter!

Focus on:

Independent deployability
Loose coupling
Modeling around business domain

Data ownership

NTTDaTa

11

Monolith

Should we really bury it in programming history?

NTTDaTa

What is a monolith?

= Single unified software application
= Self-contained and independent

= Single unit of deployment

Monolith

DB

12 © 2023 NTT DATA Corporation

NTTDaTa

Types of Monoliths

= Single process monolith

Module Module Module Service > Service > Service
Service
Service <J_

= Distributed monolith i 3 |

= Modular monolith

DB

= 3 party blackbox *

Modular monolith
Distributed monolith

Sam Newman "Monolith to Microservices" (O'Reilly Media, Inc.)

13 © 2023 NTT DATA Corporation NTT DaTa

https://samnewman.io/books/monolith-to-microservices/

14

Monolith - The good and the bad

= Easy to deploy

= Easy E2E testing

= Simplifies code reuse

= Less architectural overhead
= Less infrastructure overhead

Keyword: Less overhead

= Coupling and cohesion
= Stepping on others’ feet
= Ownership

= Single technology stack
= Difficult to understand

= Difficult to change

Keyword: Complexity

NTTDaTa

15

Decisions

Should | switch to a microservice architecture?

NTTDaTa

prime video |
~—~"

Amazon Prime Video team
throws AWS Serverless under

¥ Scaling up the Prime Video audio/video

monitoring service and reducing costs

by 90% THENEWSTACK ~ Q abus

Monoliths are sexy again.

The move from a distributed microservices
architecture to a monolith application helped achieve
higher scale, resilience, and reduce costs.

Marcin Kolny Return of the Monolith:

Mar 22, 2023
https://www.primevideotech.com/video-streaming/scaling-up-the- A m azo n D u m p S .
prime-video-audio-video-monitoring-service-and-reducing-costs-by-
ot Microservices for Video
- Monitoring
= Z € Nsoftware == A blog post from the engineering team at

Amazon Prime Video has been roiling the cloud
native computing community with its
explanation that, at least in the case of the video
monitoring, a monolithic architecture has T
produced superior performance over a
microservices and serverless-led approach. viTs

Cloud & Off-Prem H Development ‘

Amazon Prime Video swaps Microservices
for Monolith: 90% Cost Reduction

@ Published on 17 May 2023 by Arjan Franzen

= f in w May 4th, 2023 7:23am by Joab Jackson

0 0 Amazon Ditches Microservices for Monolith:
Microservices Monolith Decoding Prime Video's Architectural Shift

\ p rime Vldeo & ' g Michael Solati May 18, 2023

https://www.zensoftware.nl/en/news/amazon-prime-

video-swaps-microservices-for-monolith-90-cost-reduction NTT DaTa

© 2023 NTT DATA Corporation

https://thenewstack.io/return-of-the-monolith-amazon-dumps- Home / Blog / Arr
microservices-for-video-monitoring/

https://www.thestack.technology/amazon-prime-video-microservices-monolith/
https://thenewstack.io/return-of-the-monolith-amazon-dumps-microservices-for-video-monitoring/
https://amplication.com/blog/amazon-ditches-microservices-for-monolith-decoding-prime-videos-architectural-shift
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.zensoftware.nl/en/news/amazon-prime-video-swaps-microservices-for-monolith-90-cost-reduction

So, why still choose microservices?

Switching to a microservice architecture must be a conscious and
deliberate decision.

© 2023 NTT DATA Corporation

18

So, why still choose microservices?

Good reasons

Team autonomy

Improve scaling and robustness

Faster and more granular rollouts

Resource distribution

Improve efficiency with use of hew technology

Bad reasons

Expected increase in performance
Don’t understand domain

Working in/for a small company
It's industry standard

I've been told to do it

NTTDaTa

19

My decision process

. o (38

Distribute system load

Reduce resource contention

Improve robustness

Improve developer experience

Update technology stack

NTTDaTa

Splitting the Monolith

This is where the fun starts

NTTDaTa

Where to start?

Start small and work in iterations

= |dentify domains and boundaries

= Prioritize simple and well isolated modules

= Consider starting with a modular monolith

= Favor copying over cutting or reimplementing

= Favor moving new functionality to microservices
= Evaluate your progress constantly

= Improve based on previous experience

© 2023 NTT DATA Corporation NT T D aTa

Examples

Reusable configuration calculator

- Different department required access to monolith functionality
- Extracted functionality and provided it to the new consumer

« Existing consumer was still using monolith

- Eventually switched all consumers to new service

Log Archiver

- Monolith was storing special audit logs
- Customer required long term storage of audit logs
- Archiver implemented as service separate from monolith

NTTDaTa

23

Patterns: Strangler Fig Application

Term initially used by Martin Fowler to describe this pattern

Type of fig that wraps around host tree replacing it in the end

In Software:
— The new system is initially supported by the existing monolith
— OIld and new coexist until eventually the old gets replaced

Great for extracting externally exposed modules

https://martinfowler.com/bliki/StranglerFigApplication.html

© 2023 NTT DATA Corporation

NTTDaTa

https://martinfowler.com/bliki/StranglerFigApplication.html

24

Patterns: Strangler Fig Application
Step by step

1. Decide what to module to extract

2. Extract the module as a microservice

3. Redirect calls to the new module

© 2023 NTT DATA Corporation

Module to
extract

Monolith

Module to
extract

Extracted
module

Monolith

Module to
extract

Microservice

Extracted
module

Monolith

Microservice

NTTDaTa

Patterns: Strangler Fig Application

Benefits

Incremental approach to monolith split

Allows deployment and release separation

Fallback to original implementation possible anytime

Microservice validation is easy

NTTDaTa

Patterns: Strangler Fig Application i

Implementation Examples e

= HTTP ReverseProxy s |
— Insert a reverse proxy between clients and monolith
— Redirect the calls via the proxy when going live with the

extract Extracted

microservice
— Clients only need to change at most once to the proxy Vicrosanice

Monolith

= Message Interceptor
— Based on Queues and Topics
— Simple if infrastructure already in place ;
— Decoupled approach simplifies pattern application

extract Extracted
module

Microservice

Monolith

NTTDaTa

Patterns: Strangler Fig Application

Common Pitfalls

= Forgetting about added latency
= Creating complex logic in the middleware

= Creating your own proxy

NTTDaTa

28

Patterns: Branch by abstraction

= Aimed at situations where functionality is deep inside the
monolith

= Reduces code contention with other developers

= Removes the need for long living branches

© 2023 NTT DATA Corporation

NTTDaTa

Patterns: Branch by abstraction
Module 1
Step by step
1. Decide what to extract
Modue2 — & ngd#g{’
Monolith
2. Create and use abstraction Modue 1 [—)
Abstraction
4|—> i?l
Module 2 |
Module to
extract
Monolith
3. Create new implementation and switch concept
— Switch example: feature flag f
? i
Monolith Microservice

-

4. Clean up

© 2023 NTT DATA Corporation NT T D aTa

Patterns: Branch by abstraction
Benefits

Fallback to original implementation is very simple

Causes minimal disruption

Offers the possibility to shift only parts of the extracted
module

Great when dealing with background processes(ex. jobs)
nested inside the monolith

NTTDAartra

Patterns: Parallel run

= Runs old and new implementation simultaneously

N

.
4

S,
0

= Useful when dealing with critical functionality

= Allows for comparison between existing and new
implementation

NTTDITaN

32

Patterns: Parallel run
Step by step

1. Both new and old
implementations are called
during regular operation

2. Validation module compares the
results of both implementations

3. Once satisfied with results
switch to the new
implementation

© 2023 NTT DATA Corporation

Module 1

Abstraction

Module 2

Y

R

Service
provided
module

Module to
extract

AN /

Extracted

module

Monol itr\/

Validator

P Microservice

NTTDaTa

Examples: Combining the patterns

Strangler Fig Application + Branch by abstraction + Parallel run

Y

Calculation
Orchestrator Facade

Monolith

Service

Orechstrator provided .| Orchestrator « Executor
Module Orchestration Service Service
Calculation

Microservice Microservice

X
Validator

= Different jobs types running on new and old implementation
= Compared results manually using excel

= As soon as results were validated all jobs were switched to
new functionality

33 © 2023 NTT DATA Corporation

Strangler Fig Application + Parallel run

l

‘ HTTP Proxy ’

I S
o I

V2

Monolith ﬁ
3

Log Archiver 4T

Audit Log archiving is critical

Logs are forwarded both to Monolith as well as Log Archiver
V2

Log Archiver is still running against the productive storage

Log Archiver V2 is running against a mock so that behavior
is evaluated

NTTDaTa

Splitting the Database

So, what about data?

NTTDaTa

35

Main things to consider

= Reminder: Microservices own their data

= Each Microservice should have its own
logical database

= The database engine can be shared, but not
the data

= Avoid shared databases

© 2023 NTT DATA Corporation

NTTDAaTAd

Patterns: The Shared Database

= Wait...What!?

Can be a good starting point

Is not a long term solution

Has some very specific cases where it makes sense

However, avoid it if you can

NTTDaTa

Patterns: The Shared Database

Usage scenarios

= Static read-only data(ex. Country codes)
= The database itself acts as a service

= Example: Log Archiver

Monolith
15

Log Archiver T

37 © 2023 NTT DATA Corporation NTT DaTa

Patterns: DBaaS/CQRS/Reporting DB

= Specialization of the shared database pattern
= Database itself is a part of the distributed service architecture
= Database is read-only

= Offers high flexibility in data querying

NTTDaTa

Patterns: DBaaS/CQRS/Reporting DB

Usage scenarios

Flexible report generation

Data analysis and aggregation

Data curation systems

Can be used together with a database wrapping service

NTTDaTa

40

Patterns: DBaaS/CQRS/Reporting DB

Example

= Graph database as a service

Monolith

© 2023 NTT DATA Corporation

Oracle

Y

DB Wrapper
Service

» Data Mapper
Neo4J

NTTDaTa

Patterns: Synchronize data in application

= Application uses two databases to store data
= Reads and writes to one DB, only writes to second DB
= Very helpful to enable fallback scenarios

= Enables change of data ownership

NTTDaTa

Patterns: Synchronize data in application
Example

Monoalith Monolith

.) L——>» Microservice
Microservice

read & write

read & write write

read & write
read

A

A

42 © 2023 NTT DATA Corporation NTT DaTa

Splitting the Database
Tables

= Look for data belonging to different business areas found in
the same table

= Data should be clearly identifiable via keys

= Avoid business keys, use internal keys if required

Manufacturing Shipping BT Shipping
¥ - T e I
FIN Engine DestinationCountry FIN Engine FIN DestinationCountry
B66524 | 5.2L V8 Germany 566524 5.2LVE 666524 Germany

© 2023 NTT DATA Corporation NT T D aTa

Splitting the Database
Handling Foreign Keys

= Database joins need to be done in code

= Performance decreases due to network overhead and lower
performance compared to database engines

= Data consistency handling required
— Handle deleted data
— Handle inconsistent data

Ordering Finance Ordering = Finance

foreign key Price DestinationCountry
666524 | 65232EUR Germany 666524 12565 666524 | 65232EUR Germany

QrderNr Price DestinationCountry » QID TAX ID | QrderNr ‘

h
QoID TAX ID
666524 12565

44 © 2023 NTT DATA Corporation NTT DaTa

Splitting the Database

Transactions

= Transactions maintain the data integrity in complex systems

= We always want ACID transactions(atomicity, consistency, isolation, durability)
= In distributed system atomicity is not possible

= The Saga pattern can be used to handle transactions in distributed system

= Handling rollbacks in distributed systems is much more closely related to business
requirements

45 © 2023 NTT DATA Corporation NTT DaTa

Domain-Driven Design

= Collection of principles and patterns
= Helps create models of complex business domains
= Brings code together with business reality

= DDD Bible:
Eric Evans, “Domain-Driven Design: Tackling
Complexity in the Heart of Software”

NTTDaTa

Data or Code?

What do | split first

NTTDaTa

Data or Code?
Data

= Have a very well-known domain
= Easiest way to start is using the Multi-Schema pattern

= Can be combined well with the modular monolith

MMMMMMMMMMMMMMMMMM

MMMMMM

NTTDaTa

Data or Code?
Code

= When domain is unclear, or no confidence in domain
knowledge

= Easier starting point to extract just functionality

B b aetncs Lhe end -add = Works well with Aggregate exposing monolith pattern

Jer_ob.select=1
ntext.scene.objects.actiw

M "Selected” + str(modifier i
#irror _ob.select = 0 ‘

bpy . context.selected_ob
.ata.objects[one.name].s«-,
t cthy '™ Monolith Aggerri?;;te «——— Microservice
- lect exa
rint(“please s€
. OPERATOR CLASSES ---
DB

NTTDaTa

Dealing with new
features

Yes, stakeholders will still want them

NTTDaTa

Dealing with new features

= Evaluate how strongly a new feature is coupled to existing features

= Find synergies to logic that could be extracted as a microservice

= Always look for simple and ideally harmless changes
= Avoid long lived branches, they lead to big bangs

= Apply the patterns:
— Strangler Fig
— Branch by Abstraction
— Parallel Run
— Data Synchronization
— Aggregate Exposing Monolith

People, Tools and
Processes

It's not only the architecture that has to evolve

NTTDaTa

People, Tools and Processes

YOU CAN'T
SOLVE A
PROBLEM JUST
BY SAYING
TECHY THINGS. KUBERNETES.

YOU WOULDN'T
LET ME RE-
ARCHITECT THE JUST PUT IT
APP TO BE IN
CLOUD-NATIVE. CONTAINERS.

I NEED TO KNOW WHY MOVING
OUR APP TO THE CLOUD DIDN'T
AUTOMATICALLY SOLVE ALL OUR

@ScottAdamsSays

(

Dilbert.com

11-08-17 © 2017 Scott Adams, Inc/Dist. by Andrews McMeel

53 © 2023 NTT DATA Corporation NTT DaTa

People, Tools and Processes
Requirements

= Keep stories small and incremental

= Describe the need, the development team has the job to
decide how to fulfill the need

= Stakeholders shouldn’t decide where a feature will be
implemented, you will end up with a Big Ball of Mud

= People(including developers) have a hard time understanding
the complexity of microservice architectures

NTTDAaTa

People, Tools and Processes
Development

= Ownership of microservices becomes more complex the
more microservices you have

= Local development complexity, more microservices means
more overhead to test

= Communicating goals clearly and taking transparent
decisions is important

= Interface handling in microservices is complex

= Scheduled task handling in replicated systems is more
complex(SchedLock)

NTTDaTa

People, Tools and Processes
Testing

= Test as early as possible

= Test automation will give you higher confidence when rolling
out services

= Tester time should be focused on acquiring business
knowledge and designing tests instead of executing them

= Developers need to be closely involved in the testing process

= Adopt testing frameworks: .
— Newman L
— REST Assured
— Locust

People, Tools and Processes

Operations
; = DevOps is a not just about tools but also a cultural
‘”L Y b ot philosophy
R T S — " Developers need to get used to the concept of “you build it,
y,.y S— you run it
NN LT = Automate your release process to reduce your “time to
' “ market”

= Large number of tools available:
— GitHub Actions/GitLab CI/CD
— ArgoCD
— Grafana(incl. Loki and Tempo)
— Dynatrace
— Jaeger

— |Istio
NTTDaTa

Summary

NTTDaTa

Summary

how do | migrate a monolith to microservices

) - - _ :) - : = e (]
Migrating a monolithic application to a microservices architecture can be a complex process [s Y,

that requires careful planning and execution. Here's a high-level approach to help you get

started:

. Analyze the monolith: Understand the existing monolithic application thoroughly. Identify
its different components, dependencies, and business domains. This analysis will help you
determine which parts can be decoupled and transformed into microservices.

2. Define microservices boundaries: Identify the logical boundaries for microservices based
on business domains, functionality, or modules within the monolith. This involves breaking
down the monolith into smaller, more manageable services.

3. Identify service interactions: Analyze how different services within the monolith interact
with each other. Determine the communication protocols, data formats, and dependencies
involved. This analysis will help you design the communication patterns for your
microservices.

4. Design microservices architecture: Define the architecture for your microservices. Choose
appropriate technologies, frameworks, and tools. Decide on data storage solutions,
communication protocols (e.g., REST, message queues), and deployment strategies (e.g.,
containerization, orchestration).

5. Prioritize microservices: Decide on the order in which you'll migrate different parts of the
monolith to microservices. Consider factors like business impact, dependencies, and
technical feasibility. You might start with low-risk, isolated components to gain early wins

and build momentum.

59 © 2023 NTT DATA Corporation NTT DaTa

60

Summary

© 2023 NTT DATA Corporation

6. Refactor and decouple: Begin refactoring the monolith into microservices incrementally.

Break down the identified components into separate services, ensuring loose coupling and
high cohesion. Modify the code to adapt to the microservices architecture, adhering to the

principles of single responsibility and separation of concerns.

[. Establish APls and contracts: Define clear and well-documented APls for each

microservice. This allows different services to communicate with each other effectively.
Consider using APl gateways or service meshes to manage the interaction between

SErvices.

2. Implement inter-service communication: Set up communication mechanisms between

microservices. This can include synchronous HTTP/REST calls, asynchronous messaging
using queues or publish-subscribe systems, or event-driven architectures. Use appropriate

protocols like JSOM or Protobuf for data interchange.

9. Containerize and orchestrate: Containerize your microservices using technologies like

Docker. Utilize container orchestration platforms such as Kubernetes to manage
deployment, scaling, and high availability. This ensures your microservices can be easily

deployed and managed in a distributed environment.

0. Deploy and test: Deploy your microservices to a test environment and thoroughly test their

functionality, integration, and performance. Use automated testing frameworks and tools to

streamline the testing process and ensure the reliability of your system.

NTTDaTa

Summary

. Gradual migration: Once you have tested and validated the microservices, start gradually
migrating users and functionality from the monolith to the microservices. Monitor the
performance and stability of the system during the migration process, ensuring a seamless
transition for end-users.

2. Herate and optimize: Continuous improvement is essential in a microservices architecture.
Monitor and gather feedback from users and system metrics. Refactor and optimize your

microservices based on real-world usage patterns and performance insights.

Remember that migrating to microservices is not a one-time task but an ongoing journey. It

requires careful planning, coordination, and a focus on the benefits that microservices can

bring to your application’s scalability, maintainability, and agility.

61 © 2023 NTT DATA Corporation NTT DaTa

Questions

NTTDaTa

63

Contact

Alin Vulparu

alin.vulparu@nttdata.com
Tel: +49 151 1634 1269

NTTDAaTa

NTTDaTa

Trusted Global Innovator

