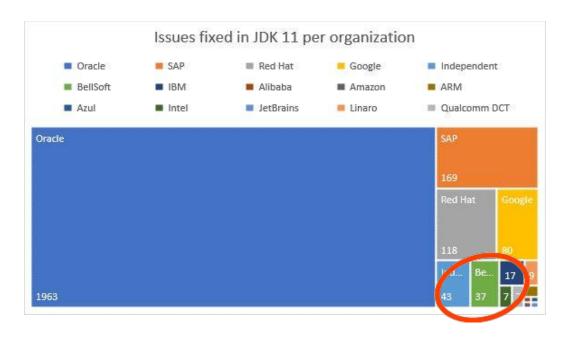


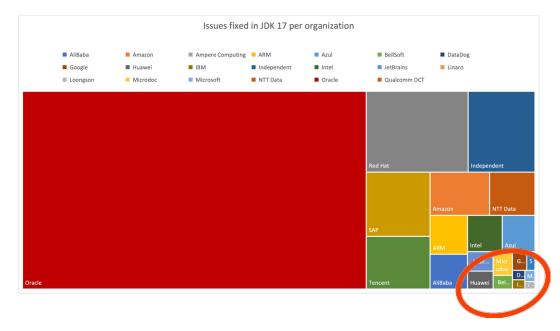
Dmitry Chuyko

Who are

Dmitry Chuyko

Liberica <u>www.bell-sw.com</u> supported OpenJDK binaries

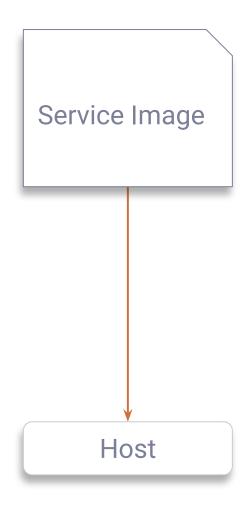

ex-employers:



OpenJDK Contributions

LTS

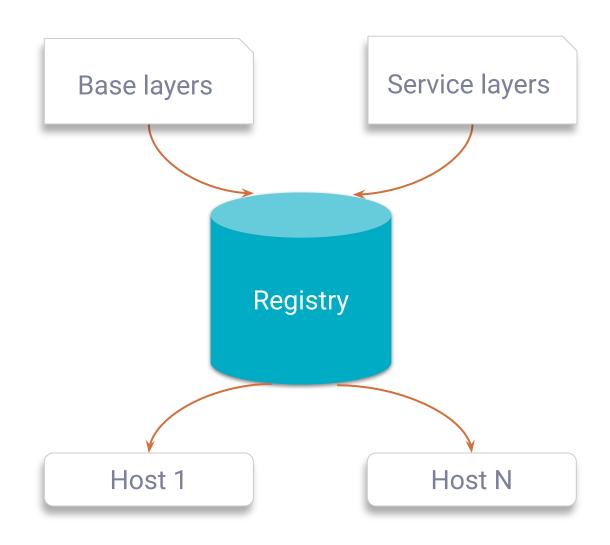
Deployment


...package an application with all of its dependencies into a standardized unit for software development.

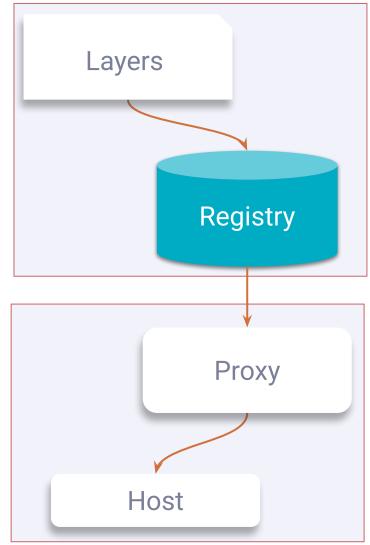
Docker

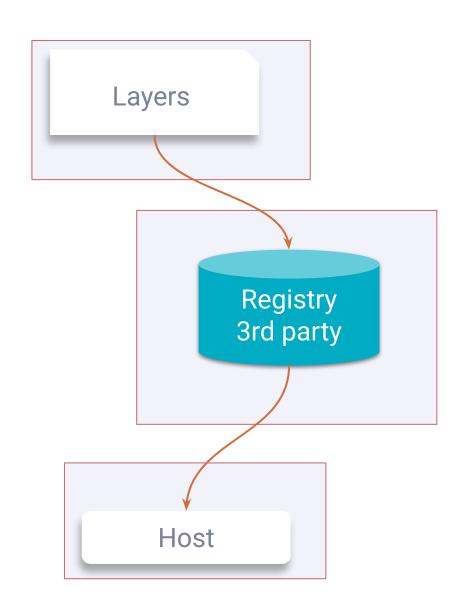
Deploy an image. Direct

- Participants
 - User/Cl in Dev local or cloud
 - Hosts in the cloud
- Transfer
 - Full image every time
- Custom connection
- Custom topology management

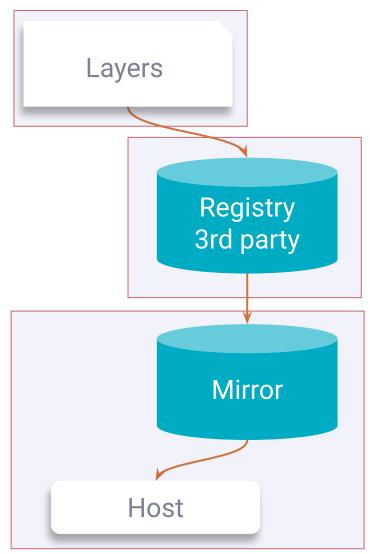

Deploy an image. Registry

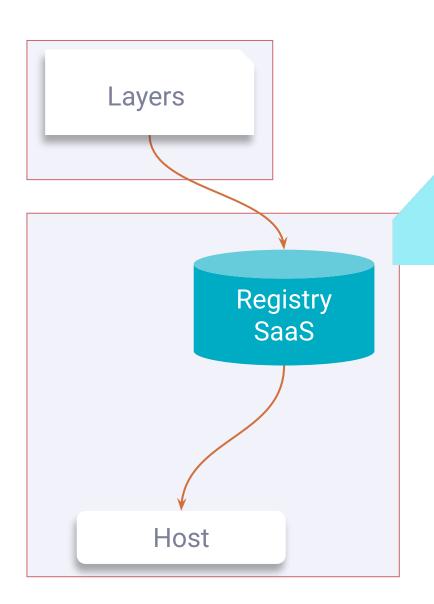
Participants

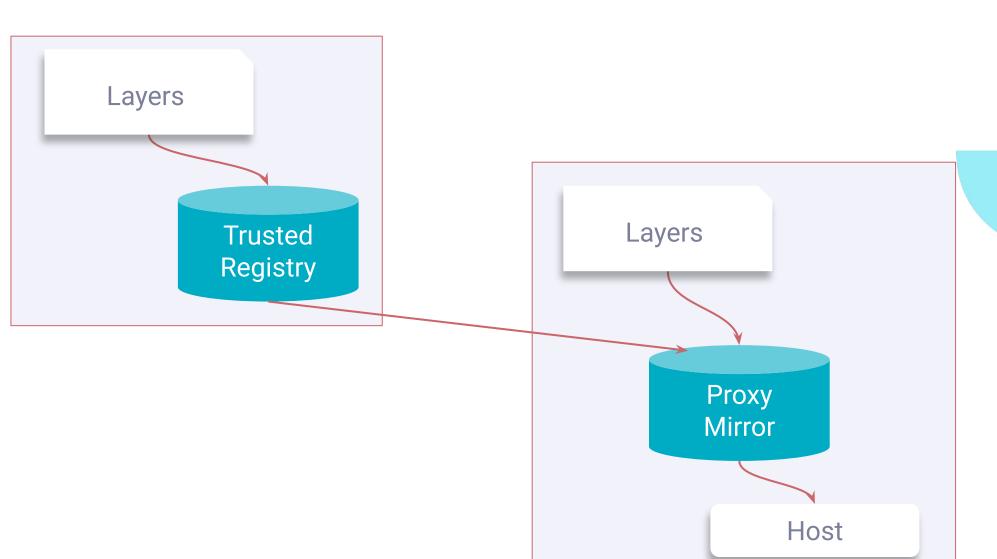

- User/CI in Dev local or cloud
- Hosts in the cloud
- Registry
 - User/CI in Dev local or cloud (proxy)
 - Cloud
 - Cloud SaaS
 - Public 3rd party SaaS


Transfer

- All layers for a clean host
- New layers


Deploy an image. Networks




Deploy an image. Networks

Deploy an Image. Networks

Public Services

On November 20, 2020, rate limits anonymous and free authenticated use of Docker Hub went into effect.

Dockerhub

Deploy an Image. Not for free

Docker Hub Free

Pull rate limits since Nov 2 2020 (200 rqs / 6 hrs)

Registry

- SaaS or 3rd party
- Day \$, GB \$, GB*day \$, GB out \$\$

Mirror

- A running instance \$
- Maintenance / SLAs \$
- Traffic

Deploy an Image. Not for free

Traffic

- No direct cost within VPC
- Cross network, VPNs \$\$
- Delays \$
- Machine time \$

Time

- CPU time \$
- Deployment \$\$
- Downtime \$\$\$

Smaller containers can help

Images are transferred over the network across domains, so less traffic is cheaper. At the same time, every deployment will go faster.

The paid registry needs to contain less volume of data, and less data is transferred out.

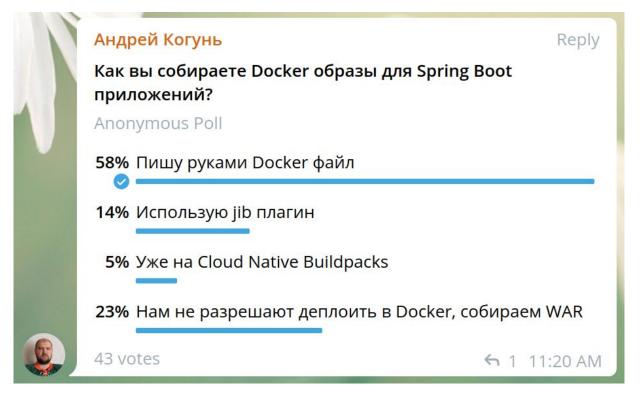
Base Images

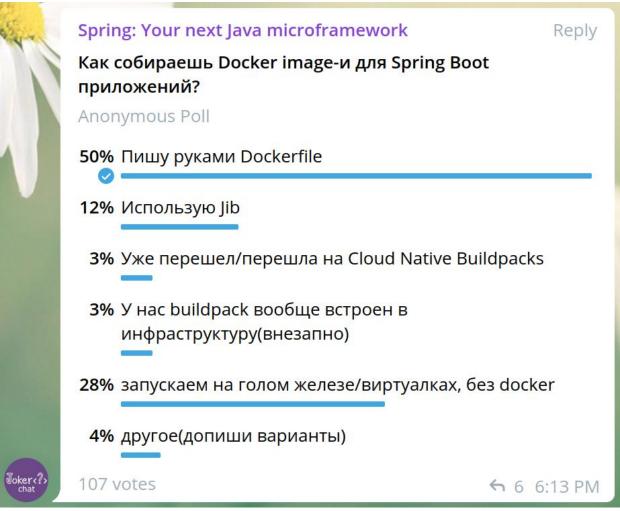
Most Dockerfiles start from a parent image.

Docker

Base/Parent Images

A base image has FROM scratch in its Dockerfile.


A parent image is the one that your image is based on. It refers to the contents of the FROM directive in the Dockerfile. Each subsequent declaration in the Dockerfile modifies this parent image. Most Dockerfiles start from a parent image rather than a base image. However, the terms are sometimes used interchangeably.



Microservice App container Framework layers App Libraries OS Packages Base **JRE** OS Scratch

Developer voice

- Aleksey Nesterov. Spring: Your next Java microframework
- Vladimir Plizga. Spring Boot "fat" JAR: Thin parts of a thick artifact

Optimize Top

- Select management system, use generic technics
- App
 - Keep microservices micro
- Framework & Libraries
 - You can choose, smaller app = wider choice
 - Also affect app part (so keep it micro)
- OS Packages
 - Keep apps micro
 - Add minimal sufficient ones
 - Select OS

Optimize Base. Selection Criteria

- Correctness
- Security and updates
- Maintenance, tools and support

- Size
- Performance

	RHEL Atomic	Debian (stable-slim)	Ubuntu
C Library	glibc	glibc	glibc
Packaging Format	rpm	dpkg	dpkg
Core Utilities	GNU Core Utils	GNU Core Utils	GNU Core Utils
Size Across Wire	31.17MB	22.49	31.76MB
Size on Disk	78.4MB	55.3MB	81.4MB
Life Cycle	6 months	-	5 years
Compatibility Guarantees	Generally within minor version	-	Generally within minor version
Troubleshooting Tools	Integrated with Technical Support	Standard Packages	Standard Packages
Technical Support	Commercial & Community	Community	Commercial & Community
ISV Support	Large Commercial	Community	Large Community
Updates	Commercial	Community	Community
Tracking	OVAL Data,CVE Database, VulnerabilityAPI & Errata,Lab Tools	OVAL Data, CVE Database, & Errata	OVAL Data, CVE Database, & Errata
Security Response Team	Commercial & Community	Community	Commercial & Community
Automated Testing	Commercial	-	-
Performance Engineering Team	Commercial	Community	Community
com/base-images	crunchtools com/c	omparison-linux-cont	ainer-images

kubedex.com/base-images

crunchtools.com/comparison-linux-container-images

OS + JDK images

- Based on OS images
- JDK package installation
 - Package manager
 - Package
 - Same vendor
- JDK binary installation
 - Requirements
 - Compatibility
- Ask your provider about testing

Optimize Base. Size

Smaller JRE

- Lighter JVM type, proper JDK variant
- Reduced set of modules, compressed modules
- No JRE (compile app to native executable)
 - Going beyond module granularity
 - Closed world
- OS
 - Small "OS" images
- No OS (distroless)
 - Actually "package manager"-less
- Scratch only
 - Only for simple programs

Compressed Size (across wire)

```
$ java -XX:+UnlockDiagnosticVMOptions ...
$ vi ~/.docker/config.json
{
   "experimental": "enabled",
   "debug": true
}
$ docker manifest inspect -v openjdk
```

Compressed Size (across wire)

```
layers": [
       "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
       "size": 42097812,
        "digest": "sha256:28587b6e64756a60a354301d011190fb69ea1eed25d7a5180811dab252e16a21"
       "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
       "size": 13511818
       "digest": "sha256:b1655352c888337fbd3af21c25aa26d4561a0b9b6035a8b22c9ee0c8ae9a3784"
       "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
       "size": 187170401
        "digest": "sha256:1f9646f00e96d7c315cc4e7a61c091ac85314d738b5c12f5a05566e9af31f65f"
```

232 MB

Uncompressed Size (disk)

```
$ docker history openjdk
IMAGE
                                      CREATED BY
                                                                              SIZE
                  CREATED
                             /bin/sh -c #(nop)
ff693b5bd1bb
               5 weeks ago
                                                CMD ["jshell"]
                                                                              0B
                                                                              321MB
                             /bin/sh -c set -eux;
                                                     arch="$(objdump="$(co...
<missing>
               5 weeks ago
<missing>
               5 weeks ago
                            /bin/sh -c #(nop)
                                                ENV JAVA VERSION=17
                                                                              0B
<missing>
                             /bin/sh -c #(nop)
               5 weeks ago
                                                ENV LANG=C.UTF-8
                                                                              0B
<missing>
               5 weeks ago
                            /bin/sh -c #(nop) ENV PATH=/usr/java/openjd...
                                                                              0B
<missing>
               5 weeks ago
                             /bin/sh -c #(nop) ENV JAVA HOME=/usr/java/o...
                                                                              0B
                             /bin/sh -c set -eux;
                                                   microdnf install
                                                                              39.3MB
<missing>
               5 weeks ago
                             /bin/sh -c #(nop)
                                                CMD ["/bin/bash"]
<missing>
               5 weeks ago
                                                                              0B
<missing>
               5 weeks ago
                             /bin/sh -c #(nop) ADD file:ab982d6f37710c434...
                                                                              111MB
```

```
$ docker images | head -n 1; docker images | grep openjdk

REPOSITORY TAG IMAGE ID CREATED

openjdk latest ff693b5bd1bb 5 weeks ago
```

SIZE 471MB

Pull time (100 Mbps)

```
$ time docker pull openjdk
...
real     0m27.990s
user     0m0.095s
sys 0m0.096s
```

Deployment costs per instance. Cloud

STORAGE

\$0.09/mo

SSD

Keep 471 MB

BANDWIDTH

\$0*

*From internet
*From same region

Pull 232 MB

CPU

≈\$0

Efficiently myocardinate market-driven innovation via open-source alignments.

Pull 28 s

REGISTRY

\$0*

*Same region.

Good rate limits
Push is cheap.

Keep & Seed

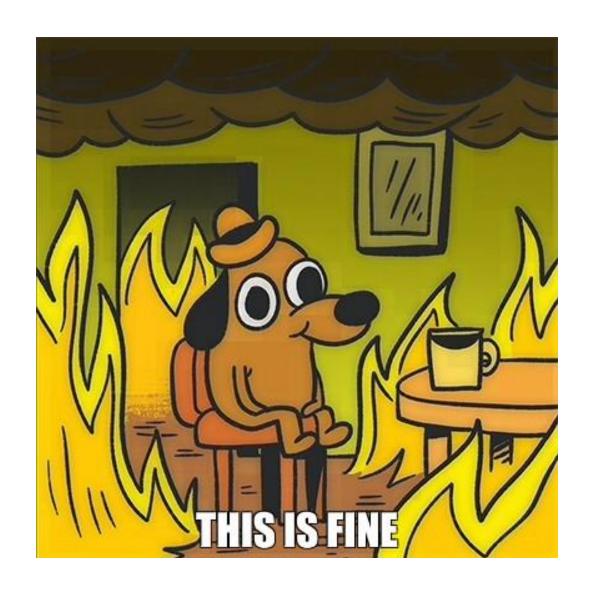
Clean deployment costs. Cloud

REGISTRY

\$0.09

Different region.

Seed 251 MB

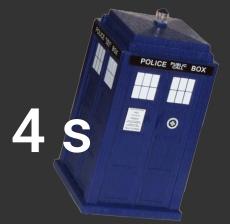

x 0.251 GB x 1000 deploys = \$666 x 29.5 days

Deployment costs. Cloud

x 0.251 GB x 1k deploys = 0.25 TB

- Tens of seconds for a single pull
- Shared HW
- Shared I/O limits
- Keep old versions
- On-premise / private cloud?
- Elastic fleet
- 10 Mbps

OS Image	Wire	Disk	libc	pkg man	shell
Ubuntu	27 MB	73 MB	glibc	apt	bash
Debian	48 MB	114 MB	glibc	apt	bash
Debian Slim	26 MB	69 MB	glibc	apt	bash
CenOS	71 MB	215 MB	glibc	yum	bash
RHEL Atomic Base	31 MB	78 MB	glibc	microdnf	bash
GCR Distroless base	7.6 MB	17 MB	glibc	_	
Alpine	2.7 MB	5.6 MB	musl	apk	ash
GCR Distroless static	0.6 MB	1.8 MB	_	_	_


Liberica JDK Images

hub.docker.com/r/bellsoft

OS + JDK 17 Image	Wire	Disk	
bellsoft/liberica-openjdk-debian	131 MB	238 MB	
bellsoft/liberica-openjdk-centos	147 MB	314 MB	
bellsoft/liberica-openjdk-alpine	79 MB	124 MB	
bellsoft/liberica-openjdk-alpine-musl	71 MB	100 MB	

Pull time

```
$ time docker pull bellsoft/liberica-openjdk-alpine-musl:latest
...
real     0m3.957s
user     0m0.026s
sys 0m0.061s
```


Small containers do help

The amount of transferred data for OS+JDK image can be decreased to 76 MB, overall pull time drops many times (like $28 \text{ s} \rightarrow 4 \text{ s} \text{ or } 6 \text{ s} \rightarrow 0.8 \text{ s}$).

Image contents look unfamiliar.

... is a security-oriented, lightweight Linux distribution based on musl libc and busybox.

Alpine

Musl libc. At a glance

- musl.libc.org
- Built on top of Linux syscall API (C bindings for the OS interfaces)
- Base language standard (ISO C)
- POSIX + widely-agreed extensions
- Lightweight (size), fast, simple, free (MIT)
- Strives to be correct in the sense of standards-conformance and safety

Musl libc. Key Principles

- musl.libc.org/about.html
- Simplicity
 - Decoupling, minimize abstractions
 - Favors simple algorithms over more complex ones
 - Readable code
- Resource efficiency
 - Minimal size, low overhead, efficient static linking (Nx10kb)
 - Scalable (small stacks)
- Attention to correctness
 - Defensive coding, no race conditions
- Ease of deployment (single binary)
- First-class support for UTF-8/multilingual text

- etalabs.net/compare_libcs.html
- Note: outdated

Comparison of C/POSIX standard library implementations for Linux

A project of Eta Labs.

The table below and notes which follow are a comparison of some of the different standard library implementations available for Linux, with a particular focus on the balance between feature-richness and bloat. I have tried to be fair and objective, but as I am the author of <u>musl</u>, that may have influenced my choice of which aspects to compare.

Future directions for this comparison include detailed performance benchmarking and inclusion of additional library implementations, especially Google's Bionic and other BSD libc ports.

Bloat comparison	musl	uClibc	dietlibc	glibc
Complete .a set	426k	500k	120k	2.0M †
Complete .so set	527k	560k	185k	7.9M †
Smallest static C program	1.8k	5k	0.2k	662k
Static hello (using printf)	13k	70k	6k	662k
Dynamic overhead (min. dirty)	20k	40k	40k	48k
Static overhead (min. dirty)	8k	12k	8k	28k
Static stdio overhead (min. dirty)	8k	24k	16k	36k
Configurable featureset	no	yes	minimal	minimal
Behavior on resource exhaustion	musl	uClibc	dietlibc	glibc
Thread-local storage	reports failure	aborts	n/a	aborts
SIGEV_THREAD timers	no failure	n/a	n/a	lost overruns
pthread_cancel	no failure	aborts	n/a	aborts
regcomp and regexec	reports failure	crashes	reports failure	crashes
fnmatch	no failure	unknown	no failure	reports failure
printf family	no failure	no failure	no failure	reports failure
strtol family	no failure	no failure	no failure	no failure
Performance comparison	musl	uClibc	dietlibc	glibc

Allocation contention, shared	0.050	0.132	0.394	0.062
Zero-fill (memset)	0.023	0.048	0.055	0.012
String length (strlen)	0.081	0.098	0.161	0.048
Byte search (strchr)	0.142	0.243	0.198	0.028
Substring (strstr)	0.057	1.273	1.030	0.088
Thread creation/joining	0.248	0.126	45.761	0.142
Mutex lock/unlock	0.042	0.055	0.785	0.046
UTF-8 decode buffered	0.073	0.140	0.257	0.351
UTF-8 decode byte-by-byte	0.153	0.395	0.236	0.563
Stdio putc/getc	0.270	0.808	7.791	0.497
Stdio putc/getc unlocked	0.200	0.282	0.269	0.144
Regex compile	0.058	0.041	0.014	0.039
Regex search (a{25}b)	0.188	0.188	0.967	0.137
Self-exec (static linked)	234µs	245µs	272µs	457μs
Self-exec (dynamic linked)	446µs	590µs	675µs	864µs
ABI and versioning comparison	musl	uClibc	dietlibc	glibc
Stable ABI	yes	no	unofficially	yes
LSB-compatible ABI	incomplete	no	no	yes
Rackwards compatibility	Vec	no	unofficially	Vec

Anocator (manoc)	musi-nauve	dillianoc	uici-nauve	ринанос
Features comparison	musl	uClibc	dietlibc	glibc
Conformant printf	yes	yes	no	yes
Exact floating point printing	yes	no	no	yes
C99 math library	yes	partial	no	yes
C11 threads API	yes	no	no	no
C11 thread-local storage	yes	yes	no	yes
GCC libstdc++ compatibility	yes	yes	no	yes
POSIX threads	yes	yes, on most archs	broken	yes
POSIX process scheduling	stub	incorrect	no	incorrect
POSIX thread priority scheduling	yes	yes	no	yes
POSIX localedef	no	no	no	yes
Wide character interfaces	yes	yes	minimal	yes
Legacy 8-bit codepages	no	yes	minimal	slow, via gconv
Legacy CJK encodings	no	no	no	slow, via gconv
UTF-8 multibyte	native; 100% conformant	native; nonconformant	dangerously nonconformant	slow, via gconv; nonconformant
Iconv character conversions	most major encodings	mainly UTFs	no	the kitchen sink

1580	yes	yes	yes	yes
x86_64	yes	yes	yes	yes
x86_64 x32 ABI (ILP32)	experimental	no	no	non-conforming
ARM	yes	yes	yes	yes
Aarch64 (64-bit ARM)	yes	no	no	yes
MIPS	yes	yes	yes	yes
SuperH	yes	yes	no	yes
Microblaze	yes	partial	no	yes
PowerPC (32- and 64-bit)	yes	yes	yes	yes
Sparc	no	yes	yes	yes
Alpha	no	yes	yes	yes
S/390 (32-bit)	no	no	yes	yes
S/390x (64-bit)	yes	no	yes	yes
OpenRISC 1000 (or1k)	yes	no	no	not upstream
Motorola 680x0 (m68k)	yes	yes	no	yes
MMU-less microcontrollers	yes, elf/fdpic	yes, bflt	no	no
Build environment comparison	musl	uClibc	dietlibc	glibc
Legacy-code-friendly headers	partial	yes	no	yes
Lightweight headers	ves	no	ves	no

Security/hardening comparison	muel	uClibc	dietlibc	aliha
Security/nar dening comparison	musl	uchbe	dietilbe	glibc
Attention to corner cases	yes	yes	no	too much malloc
Safe UTF-8 decoder	yes	yes	no	yes
Avoids superlinear big-O's	yes	sometimes	no	yes
Stack smashing protection	yes	yes	no	yes
Heap corruption detection	yes	no	no	yes
Misc. comparisons	musl	uClibc	dietlibc	glibc
License	MIT	LGPL 2.1	GPL 2	LGPL 2.1+ w/exceptions

Musl libc. Key Issues

It's different

```
$ cat src/hotspot/os/linux/os_linux.cpp
...
# include <stdio.h>
# include <unistd.h>
...
```

Busybox. At a glance

- busybox.net
- Many Unix utilities in a single executable file
 - i.e. shell commands and the shell itself
- Glibc, musl (Alpine), uLibc
- GPLv2
- hub.docker.com/_/busybox

Busybox. Key Principles

- Swiss army knife, small
- Implementation of the standard Linux command line tools
- Smallest executable size
- Simplest and cleanest implementation
- Standards compliant
- Minimal run-time memory usage (heap and stack)
- Fast

Busybox. Key Issues

- It's different
- Single executable
 - Process binary path
 - Non-modular binary
- Doesn't support environment variables with periods in the names
 - POSIX compliant

Alpine Linux. At a glance

- alpinelinux.org
- Small
 - Built around musl libc and busybox
 - Small packages

Simple

- OpenRC init system
- apk package manager

Secure

Position Independent Executables (PIE) binaries
 with stack smashing protection

Alpine Linux. Key Issues

- It's different
- Not desktop-oriented
- Package repository

Alpine Linux is perfect for containers

It is small and secure. All necessary tools are available out of the box or in packages.

Alpine containers with Java work.

Alpine Linux Port

Port the JDK to Alpine
Linux, and to other Linux
distributions that use musl
as their primary C library,
on both the x64 and
AArch64 architectures.

- JEP 386

JDK 16

- JEP 386: Alpine Linux Port
- openjdk.java.net/jeps/386

```
Owner Boris Ulasevich
Type Feature
Scope Implementation
Status Integrated
Release 16
Component hotspot/runtime
Discussion portola dash dev at openjdk dot java dot net
Effort M
Duration M
Reviewed by Alan Bateman, Vladimir Kozlov
Endorsed by Mikael Vidstedt
Created 2019/08/13 10:33
Updated 2020/10/14 07:48
Issue 8229469
```

Summary

Port the JDK to Alpine Linux, and to other Linux distributions that use musl as their primary C library, on both the x64 and AArch64 architectures,

Motivation

Musl is an implementation, for Linux-based systems, of the standard library functionality described in the ISO C and POSIX standards. Several Linux distributions including Alpine Linux and OpenWrt are based on musl, while some others provide an optional musl package (e.g., Arch Linux).

The Alpine Linux distribution is widely adopted in cloud deployments, microservices, and container environments due to its small image size. A Docker base image for Alpine Linux, for example, is less than 6 MB. Enabling Java to run out-of-the-box in such settings will allow Tomcat, Jetty, Spring, and other popular frameworks to work in such environments natively.

By using jlink (JEP 282) to reduce the size of the Java runtime, a user will be able to create an even smaller image targeted to run a specific application. The set of modules required by an application can be determined via the ideps command.

Project Portola

- openjdk.java.net/projects/portola
- Port of the JDK to the Alpine Linux distribution, and in particular the musl C library
- Started by Mikael Vidstedt from Oracle in 2017
- Used for Alpine musl containers with JDK 9+
- Integrated into mainline in 2020 with JEP 386
 - Delivered by BellSoft
 - JDK 16

Project Portola. Build

- A new port
 - Determine and distinguish C libraries
 - Conditional compilation
- Native build
- Cross-toolchain for glibc environment
- Implement missing functions or make them compatible
- Testing environment
- Documentation
 - https://github.com/openjdk/jdk/blob/master/doc/building.md#building-for-musl

JNI. Build

```
$ gcc -std=c99 -I"$JAVA HOME/include" -I"$JAVA HOME/include/linux" -shared -o
libhelloworld.so -fPIC JNIHelloWorld.c
16K libhelloworld.so
$ java -Djava.library.path=. JNIHelloWorld
Hello world!
$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld
Hello world!
$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine-musl:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld
Hello world!
```

JNI. Cross Build

```
$ x86 64-linux-musl-cross/bin/x86 64-linux-musl-gcc -std=c99 -I"$JAVA HOME/include"
-I"$JAVA HOME/include/linux" -shared -o libhelloworld.so -fPIC JNIHelloWorld.c
7.7K libhelloworld.so
$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine-musl:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld
Hello world!
$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld
Hello world!
$ java -Djava.library.path=. JNIHelloWorld
Exception in thread "main" java.lang.UnsatisfiedLinkError: /home/tp/jni/libhelloworld.so:
/usr/lib/x86 64-linux-gnu/libc.so: invalid ELF header
```

Project Portola. Issues

- LD_PRELOAD is not the same on different platforms
 - Glibc resolves libs not like musl (or AIX libc)
 - jpackage and other launchers were fixed to still use proper JDK libs
- Alpine used to have PaX/grsecurity in kernel by default
 - Attempt to execute JIT code shut down the JVM
 - Added Memory protection check on startup
- JDWP (Debug) sometimes had troubles with IPv4/IPv6 config
 - Initialization was made more careful
- Debugging (gdb)
 - There's SIGSYNCCALL during JVM init
 - Debug with -XX:-MaxFDLimit

Project Portola. Issues

- Running AWT in headless mode
 - You may want to render images
 - Install freetype and fonts
- Fontmanager
 - For all real cases load awt lib before fontmanager
- NMT
 - Use latest Alpine (3.11+)
- NUMA detection requires recent libnuma
 - apk add numactl

Project Portola. Issues

- Isof does not support '-p' option on busybox
 - Expect reduced output
- Musl does not execute scripts that does not have a proper shebang
 - Write proper # headers in *.sh
 - https://www.openwall.com/lists/musl/2020/02/13/4
- Serviceability agent (private API) doesn't work

Shebang in scripts

```
docker run -it bellsoft/liberica-openjdk-alpine-musl:15 ash
              run.sh
-rwxr-xr-x
echo "hello"
jshell> Runtime.getRuntime().exec("./run.sh")
   Exception java.io.IOException: Cannot run program "./run.sh": error=8, Exec format error
              run.sh
#!/bin/sh
echo "hello"
jshell> Runtime.getRuntime().exec("./run.sh")
$1 ==> Process[pid=262, exitValue=0]
```

Variables with dots

```
$ docker run -it -e "hibernate.format sql=true" bellsoft/liberica-openjdk-alpine:15 ash
# set | grep hibernate
hibernate
$ docker run -it -e "hibernate.format sql=true" bellsoft/liberica-openjdk-debian:15 bash
# set | grep hibernate
<empty>
$ docker run -it -e "hibernate format sql=true" bellsoft/liberica-openjdk-alpine-musl:15 ash
# set | grep hibernate
hibernate format sql='true'
```

Serviceability Agent

```
$ docker run -it bellsoft/liberica-openidk-alpine:8 istack -h
Options:
       to force a thread dump. Use when jstack <pid> does not respond (process is hung)
       to print both java and native frames (mixed mode)
       long listing. Prints additional information about locks
    -h or -help to print this help message
$ docker run -it bellsoft/liberica-openjdk-alpine-musl:8 jstack -h
Options:
   -l long listing. Prints additional information about locks
    -h or -help to print this help message
$ docker run -it bellsoft/liberica-openjdk-debian:11 jstack -h
Options:
    -l long listing. Prints additional information about locks
    -h or -help to print this help message
```

Alpine Linux port in upstream

Unifies platform support across community and distributions. Helps maintenance and port development for perfect small containers. Liberica JDK Alpine musl containers are tested and TCK-verified.

Different uses are possible.

Make More Users Happy

We plan to stay on Java 8.

~50% of users

Portola Expansion

- JDK 11 LTS
 - Not in mainline (yet)
 - Historical downports in Liberica 9+
 - Liberica 11u on <u>Dockerhub</u>
- JDK 8 LTS
 - Liberica 8u on <u>Dockerhub</u>
- AArch64
- OpenWRT

Linux @bellsoftware

- Acquired ex-Oracle Linux engineering best talent
- Fixed some kernel and libc bugs as part of Liberica JDK support
- OSS Contributions
 - MUSL support for LTP project, ~100 patches
 - MUSL support for OpenJDK
 - MUSL support for GraalVM

Alpaca Linux

...is the operating system optimized for Java deployment, emphasizing high performance, security, small size, and flexibility.

- Bell of

Top 4 features of Alpaca Linux

Enhanced security

The lack of extra components means it is harder to break, and timely, frequent updates reliably remove the vulnerabilities. As a bonus, an additional security hardening is provided by userspace compilation options.

Optimized performance

Alpaca's features include tuned kernel, optimized libc, and optimized malloc options to boost the performance of your applications without sacrificing stability.

Miniature size

With its 2.9 Mb base image size, Alpaca offers the smallest performant docker images, JDK docker images, and native images, making the deployment faster and memory footprint lesser.

Liberica Lite and Liberica NIK

Liberica Lite, the optimized version of Liberica JDK, enhances the performance and minimizes memory footprint. Liberica NIK allows creating the native images that benefit even more with Alpaca Linux as the foundation.

Support cycle

Alpaca LTS aligned with Linux Kernel LTS

- 5.15 Kernel LTS for Alpaca 3.15 LTS

Alpaca LTS supported for 6 years

- longer than 2 years max for Alpine
- 2 years overlap with the next LTS

Alpaca 3.20

Alpine 3.20

Alpaca 3.19 LTS support

Alpine 3.19

Alpaca 3.18

Alpine 3.18

Alpaca 3.17

Alpine 3.17

Alpaca 3.16

Alpine 3.16

Alpaca 3.15 LTS support

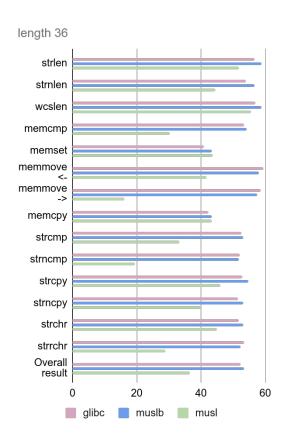
Alpine 3.15

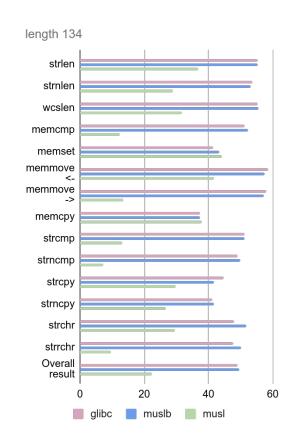
Alpaca 3.14

Alpine 3.14

Alpaca. Addressing CVEs

- BellSoft Security Advisory (being built)
 - Full open listings of addressed CVEs and affected components
 - OpenJDK/Liberica JDK security advisory
 - Tooling and scanning to support the efforts
 - Internal CVE DB checking against MITRE/NIST
 - CVE checker
 - Static code and binary analysis tools

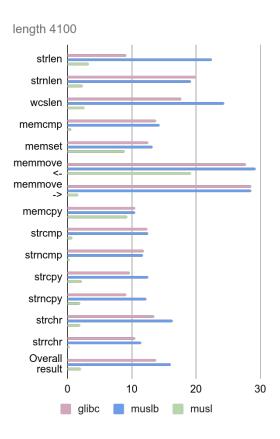



Alpaca. Optimized musl performance

Tests: basic functional string tests with 1 million iterations.

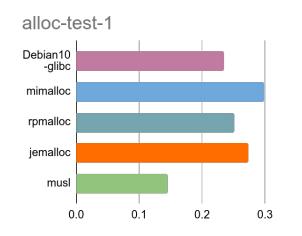
Results are shown in relative avg speed, 1K/ns.

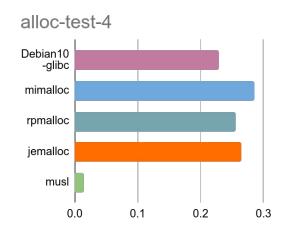
Machine: bare-metal, Intel Core i5-6600 CPU 3.30GHz.

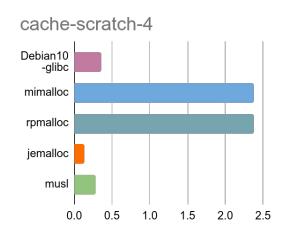


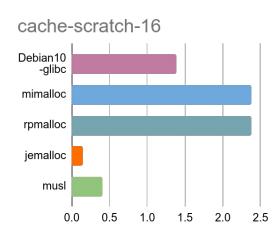
Higher is better:

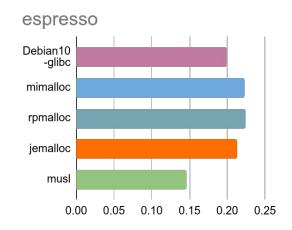
GLIBC: Debian 10.11 2.28


MUSL-perf: Alpaca musl-1.2.2_p-r1803

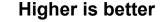

MUSL: Alpaca musl-1.2.2-r3

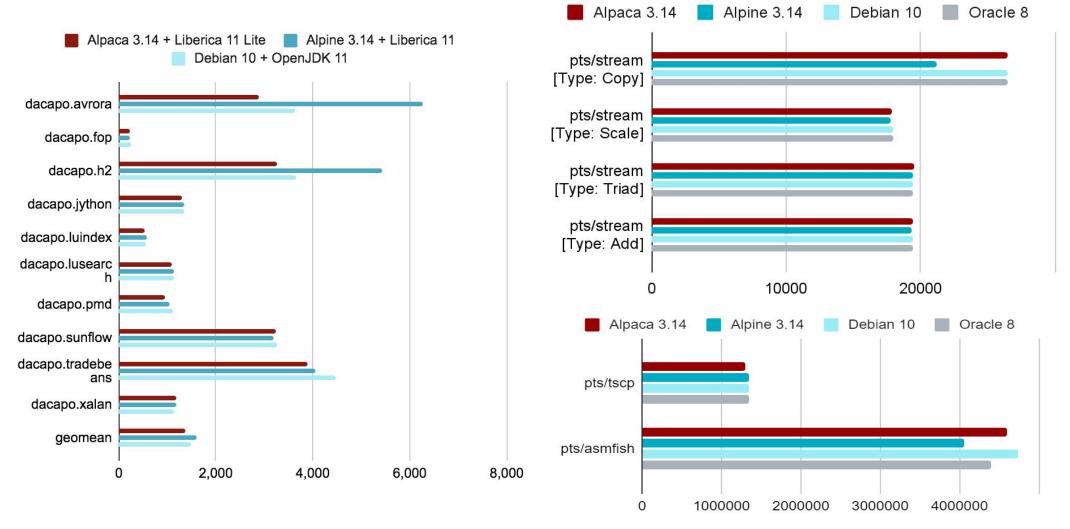



Alpaca. Extra mallocs performance



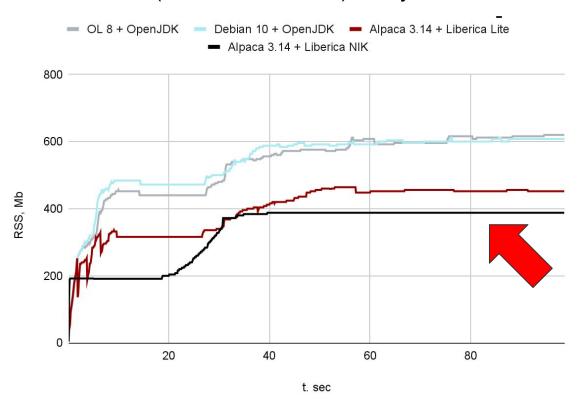
- alloc-test: simulates intensive allocation workloads with a Pareto distribution.
- cache-scratch: introduced with the Hoard allocator to test for passive-false sharing of cache lines.
- espresso: a programmable logic array analyzer in the context of cache aware memory allocation.

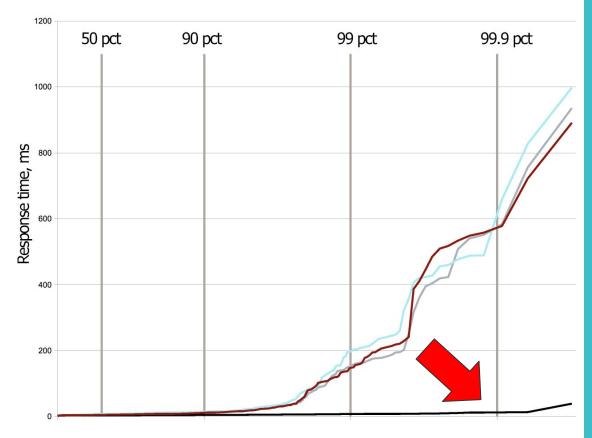



Results in relative speed 1/s, higher is better

Alpaca. Phoronix benchmarks

Lower is better, by 7% geomean





Petclinic RAM footprint & latency

Low-end HW, underutilized CPU, mixed scenario Low load (133 users, 54 RPS), delayed load start

- Up to 50% lower RAM consumption

- NIK vs JDK including ramp-up
 - 25x lower latency at 99 pct
 - 46x lower latency at 99.9 pct

Cheat Sheet Build microservice image Fast updates Smallest Full image Tools, Standard AOT compile to Native image Build Build Thin jar Fat jar Shell, packages Fast Clean pull Pkg manager Glibc Yum Liberica Liberica Distroless / Liberica Liberica Distroless Debian CentOS Alpine + glibc Alpine musl java Thin app Medium base Large app Thin base Thin app Large base

Conclusions

- Container images
 - Many ways to deliver
 - Many ways to build
 - Small base images help in production
- Alpine & musl
 - Smallest OS image with tools
 - Peculiarities
- OpenJDK port to musl
 - Officially in OpenJDK
 - Good base images with JDK
- Alpaca, Liberica Lite, Liberica NIK
 - Make it all even more secure and performant

Thank you for your attention!

https://bell-sw.com

dmitry.chuyko@bell-sw.com

