TN G TECHNOLOGY
CONSULTING

' Kl-gestlitzte Java Migrationen
p | : s Y .‘ o 4 | . e 3

® DERAD.) s
Michael Pisula 2025-07-10 Stuttgart

Marijn van Geest

Bl From Copilot to Autopilot TNG = oicu - ne

TN G — TECHNOLOGY
—— CONSULTING

1 Code Migration

TECHNOLOGY
CONSULTING

IRl Al Code Migration TN

Andy Jassy [} Caa
g I Monate

One of the most tedious (but critical tasks) for software development teams is updating
foundational software. It's not new feature work, and it doesn’t feel like you're moving the
experience forward. As a result, this work is either dreaded or put off for more exating work—
or both.

Amazon Q our GenAl assistant for software development, is trying to bring some light to this
heaviness. We have a new code transformation capability, and here's what we found when we
integrated it into our internal systems and applied it to our needed Java upgrades:

- The average time to upgrade an application to Java 17 plummeted from what's typically 50
developer-days to just a few hours. We estimate this has saved us the equivalent of 4,500
developer-years of work (yes, that number is crazy but, real).

- In under six months, we've been able to upgrade more than 50% of our production Java
systems to modernized Java versions at a fraction of the usual time and effort. And, our
developers shipped 79% of the auto-generated code reviews without any additional changes.

- The benefits go beyond how much effort we've saved developers. The upgrades have
enhanced security and reduced infrastructure costs, providing an estimated $260M in
annualized efficiency gains.

This is a great example of how large-scale enterprises can gain significant efficiencies in
foundational software hygiene work by leveraging Amazon Q. It's been a game changer for
us, and not only do our Amazon teams plan to use this transformation capability more, but
our O team plans to add more transformations for developers to leverage.

- Al Code Migration TNG ZE‘LZTE#?SE

The average time to upgrade an
application to Java 17 plummeted
from what’s typically 50 developer-
days to just a few hours. We
estimate this has saved us the
equivalent of 4,500 developer-years

of work (yes, that number is crazy
but, real).

- Al Code Migration TNG Eii”sﬁ‘l#?ﬁé

Different Approaches

Direct use Use of standard- Developing
of LLMs tooling specific
e.g. TAIA with LLMs migration tools

Complexity
* Migrating sub-projects * Upgrading language/framework versions * Migrating between different languages
* Evaluating LLM migration * Migrating mid-size to large projects * Migrating of legacy languages,
* Migrating modern programming languages, e.g. Natural - Python

e.g. Java 8 - Java 17 * Specific target architectures

Al Code Migration TNG = consuinne

m— Java Migration

Il Al Code Migration TNG = consuinne

m— Java Migration

- LLM Parser

- Language Server

- LLM Picker

«— - User chooses

- Pick first

- Java Migration

@Override
public String getAsString(FacesContext facesContext, UIlComponent
component, Object object) {
if (object == null) {
return null;
}
if (object instanceof Customer) {
Customer o = (Customer) object;
return getStringKey(o.getCustomerld());
} else {

return null;

OpenRewrite

TECHNOLOGY
CONSULTING

TNG

@Override
public String getAsString(FacesContext facesContext, UIlComponent
component, Object object) {
if (object == null) {
return null;
}
if (object instanceof Customer o) {
return getStringKey(o.getCustomerld());
} else {

return null;

IR \Why OpenRewrite + Al?

public String base64decode(String text) {
try {
return new String(dec.decodeBuffer(text), DEFAULT ENCODING);
} catch (IOException e) {
return null;

}

OpenRewrite

TN G TECHNOLOGY
CONSULTING

public String base64decode(String text) {
return new String(dec.decode(text), DEFAULT ENCODING);

}

Why OpenRewrite + Al? TNG = Gt

Command: debug

Found 2 error(s) that the AI believes to be independent

Looking at selected error 1 / 2 in '/C:/Users/micha/Documents/Projects/AICM/AcmePools/src/main/java/com/acme/acmepools/
utility/CreditLimitEncryptor. java’ with message 'unreported exception java.io.UnsupportedEncodingException; must be cau
ght or declared to be thrown

Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.6.2:compile (default-compile) on project AcmePo
ols: Compilation fallure

In file src/main/java/com/acme/acmepools/utility/CreditLimitEncryptor. java:

@33
- return new String(dec.decode(text), DEFAULT_ENCODING);

+ try {
+ return new String(dec.decode(text), DEFAULT_ENCODING);

+ } catch (UnsupportedEncodingException e) {
+ return null;

Should the suggested patches from above be accepted into the files?

(y)es / (m)odify / (s)kip
Response: y

TN — TECHNOLOGY
—— CONSULTING

IRl Improving Debug Context TNG = consuimng

w—= Context Retrieval is further Expanded

* User-Al interaction allows context-aware chatting about an error
o User can guide the Al into the right direction
o The Al can explain in more detail what is wrong

e RAG based retrieval of known issues and how to solve them

e And more ideas...
o Let the LLM decide what it wants to know

o Dynamically search the internet for solutions

“ Al Rule Application TNG ZE%@T%?SQ;

Define Custome Migration Rules

* Feature to complement the rule-based approach with custom ai-

based rules
{
"1d": O,
"detect": "\\bprint"
"instruction": "Use logging 1nstead of printing everywhere"

}

* Al useslanguage server to iteratively build its own context

* Rules will be applied concurrently

L — TECHNOLOGY
n Al Rule Application TNG = consuimine

. . . TECHNOLOGY
n Migration Planning TNG = cotsuimne

e In Multi-Module Projects

* Feature to plan correct sequence of module migrations
* Automatically sorts modules together in migration "levels”

* Based on graphical representation of the project structure

- - TECHNOLOGY
Migration Results TNG = consuimme

e Migration Project

* 600 Modules
* Estimated manual migration 2 years
* Two months, 1 developer

* Average migration: 30 minutes per module

n Al Code Migration TNG Eii”sﬁ‘l#?ﬁé

Different Approaches

Direct use Use of standard- Developing
of LLMs tooling specific
e.g. TAIA with LLMs migration tools

Complexity
* Migrating sub-projects * Upgrading language/framework versions * Migrating between different languages
* Evaluating LLM migration * Migrating mid-size to large projects * Migrating of legacy languages,
* Migrating modern programming languages, e.g. Natural - Python

e.g. Java 8 - Java 17 * Specific target architectures

- - TECHNOLOG
“ Complex Migrations TNG = cotsuimine

m— Mligration PL/I - Java

* Create tooling to assist developers migrating PL/1 into @ Multiple million LOC total

specific target Java framework

» Custom PL/I parser to extract system information Pilot phase, extended to 1 year

* Support for client developers via IntelliJ plugin

, Insurance industry
* Quotes of client developers: @

e \Very nice code”
 Looks like code which | would commit“

e When can we have it?“

. . — TECHNOLOGY
“ Al Code Migration TN — CONSULTING

Bl PL/I - Java Migration TNG = Greuimne

- - TECHNOLOGY
“ Frontend migration TNG CONSULTING

 Migrating code between frontend frameworks is complex

 The architecture changes between the old and new code

n Al Code Migration TNG ZE%@T%?SE

—|nsights

 Human expertise is key for pre-analysis and review

* Migrating smaller pieces of code leads to better results

* Splitting the migration into separate steps improves the result

* Right models for right tasks

* A separate post-processing step can leverage Ul to further increase code quality
* Tests are important

 Generating unit tests is a good complementary step

Thank you for your attention! TNG = Gt

Michael Pisula Marijn van Geest

Principal Consultant Software Consultant
michael.pisula@tngtech.com marijn.vangeest@tngtech.com

	Folie 1
	Folie 2: From Copilot to Autopilot
	Folie 3
	Folie 4: AI Code Migration
	Folie 5: AI Code Migration
	Folie 6: AI Code Migration
	Folie 7: AI Code Migration
	Folie 8: AI Code Migration
	Folie 9: Java Migration
	Folie 10: Why OpenRewrite + AI?
	Folie 11: Why OpenRewrite + AI?
	Folie 12: Demo
	Folie 13: Improving Debug Context
	Folie 14: AI Rule Application
	Folie 15: AI Rule Application
	Folie 16: Migration Planning
	Folie 17: Migration Results
	Folie 18: AI Code Migration
	Folie 19: Complex Migrations
	Folie 20: AI Code Migration
	Folie 21: PL/I → Java Migration
	Folie 23: Frontend migration
	Folie 24: AI Code Migration
	Folie 25: Thank you for your attention!

