
2025-07-10

KI-gestützte Java Migrationen

StuttgartMichael Pisula
Marijn van Geest

2 From Copilot to Autopilot

3

Code Migration

4 AI Code Migration

5 AI Code Migration

The average time to upgrade an
application to Java 17 plummeted
from what’s typically 50 developer-
days to just a few hours. We
estimate this has saved us the
equivalent of 4,500 developer-years
of work (yes, that number is crazy
but, real).

6

Different Approaches

AI Code Migration

Complexity

• Migrating sub-projects
• Evaluating LLM migration

• Upgrading language/framework versions
• Migrating mid-size to large projects
• Migrating modern programming languages,

 e.g. Java 8 → Java 17

• Migrating between different languages
• Migrating of legacy languages,

 e.g. Natural → Python
• Specific target architectures

Direct use
of LLMs
e.g. TAIA

Use of standard-
tooling

with LLMs

Developing
specific

migration tools

7

Java Migration

AI Code Migration

8

Java Migration

AI Code Migration

- LLM Parser

- Language Server

- LLM Picker

- User chooses

- Pick first

9 Java Migration

@Override

public String getAsString(FacesContext facesContext, UIComponent

component, Object object) {

if (object == null) {

return null;

}

if (object instanceof Customer) {

Customer o = (Customer) object;

return getStringKey(o.getCustomerId());

} else {

return null;

}

}

@Override

public String getAsString(FacesContext facesContext, UIComponent

component, Object object) {

if (object == null) {

return null;

}

if (object instanceof Customer o) {

return getStringKey(o.getCustomerId());

} else {

return null;

}

}

OpenRewrite

10 Why OpenRewrite + AI?

public String base64decode(String text) {
try {

return new String(dec.decodeBuffer(text), DEFAULT_ENCODING);
} catch (IOException e) {

return null;
}

}

public String base64decode(String text) {
return new String(dec.decode(text), DEFAULT_ENCODING);

}

OpenRewrite

11 Why OpenRewrite + AI?

LLM Fix

12 Demo

13 Improving Debug Context

Context Retrieval is further Expanded

• User-AI interaction allows context-aware chatting about an error

o User can guide the AI into the right direction

o The AI can explain in more detail what is wrong

• RAG based retrieval of known issues and how to solve them

• And more ideas...

o Let the LLM decide what it wants to know

o Dynamically search the internet for solutions

14 AI Rule Application

Define Custome Migration Rules

• Feature to complement the rule-based approach with custom ai-

based rules

• AI uses language server to iteratively build its own context

• Rules will be applied concurrently

{

"id": 0,

"detect": "\\bprint"

"instruction": "Use logging instead of printing everywhere"

}

15 AI Rule Application

16 Migration Planning

In Multi-Module Projects

• Feature to plan correct sequence of module migrations

• Automatically sorts modules together in migration "levels"

• Based on graphical representation of the project structure

17 Migration Results

Migration Project

• 600 Modules

• Estimated manual migration 2 years

• Two months, 1 developer

• Average migration: 30 minutes per module

18

Different Approaches

AI Code Migration

Complexity

• Migrating sub-projects
• Evaluating LLM migration

• Upgrading language/framework versions
• Migrating mid-size to large projects
• Migrating modern programming languages,

 e.g. Java 8 → Java 17

• Migrating between different languages
• Migrating of legacy languages,

 e.g. Natural → Python
• Specific target architectures

Direct use
of LLMs
e.g. TAIA

Use of standard-
tooling

with LLMs

Developing
specific

migration tools

19

Multiple million LOC total

Complex Migrations

Migration PL/I → Java

• Create tooling to assist developers migrating PL/1 into

specific target Java framework

• Custom PL/I parser to extract system information

• Support for client developers via IntelliJ plugin

• Quotes of client developers:

• „Very nice code“

• „Looks like code which I would commit“

• „When can we have it?“

Pilot phase, extended to 1 year

Insurance industry

20 AI Code Migration

21 PL/I → Java Migration

23 Frontend migration

• Migrating code between frontend frameworks is complex

• The architecture changes between the old and new code

24

Insights

AI Code Migration

• Human expertise is key for pre-analysis and review

• Migrating smaller pieces of code leads to better results

• Splitting the migration into separate steps improves the result

• Right models for right tasks

• A separate post-processing step can leverage UI to further increase code quality

• Tests are important

• Generating unit tests is a good complementary step

25

Michael Pisula
Principal Consultant

michael.pisula@tngtech.com

Thank you for your attention!

Marijn van Geest
Software Consultant

marijn.vangeest@tngtech.com

	Folie 1
	Folie 2: From Copilot to Autopilot
	Folie 3
	Folie 4: AI Code Migration
	Folie 5: AI Code Migration
	Folie 6: AI Code Migration
	Folie 7: AI Code Migration
	Folie 8: AI Code Migration
	Folie 9: Java Migration
	Folie 10: Why OpenRewrite + AI?
	Folie 11: Why OpenRewrite + AI?
	Folie 12: Demo
	Folie 13: Improving Debug Context
	Folie 14: AI Rule Application
	Folie 15: AI Rule Application
	Folie 16: Migration Planning
	Folie 17: Migration Results
	Folie 18: AI Code Migration
	Folie 19: Complex Migrations
	Folie 20: AI Code Migration
	Folie 21: PL/I → Java Migration
	Folie 23: Frontend migration
	Folie 24: AI Code Migration
	Folie 25: Thank you for your attention!

