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22 years of professional experience
10 years of personnel responsibility

Various roles (developer, tester, requirements engineer,
technical architect, solution architect, project manager,

consultant)
Software archaeologist

Open-source enthusiast

"To create an environment in which we enjoy
working together and, as owners, contribute to
building a company we can be proud of.”
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1990 — my 15t Windows — 3.0
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1993 — my 15t Word for Windows — 6.0
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1993 — my 18t Linux — self-compiled
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2001 — my 1st Job as Lotus Notes/Domino Developer

D 1985-2001 Lotus Development Corporation. All rights reserved.
This software is subject to the Lotus Software Agreement,
Restricted Rights for U.S. government users, and applicable
export regulations.
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2002 — my 1st Java v1.4

Java 2 on FreeB5D — Mozilla Firefox
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My motivation

Many of the systems | have reviewed in the last years have quite a few things in common:

poorly designed

frustration

poorly coded

Too much technical debt

wasted lifetime

poorly documented

wasted money

12
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Technical debt — When speed is the only aim

S

Intentional

Occurs when an organization
makes a conscious decision
to optimize for the present
rathen than for the future.

T

Unintentional

Occurs when an organization
makes an avoidable mistake.
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The 4 Reasons for Technical Debt

Intentional Unintentional
%
= We don’t We do not
(&) .
g | havetime know how
= . We should
2 | We will deal
S I not have
= | with it later

done that
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Technical debt - Examples

Common technical debts in software development projects:

* no code comments / lots of comments

* meaningless or misleading names (variables, methods, ...)
* long methods

* methods that does many things

* missing or patchy documentation

* missing or patchy tests

* missing CI/CD infrastructure

16



Technical debt - Examples

More technical debts in software development projects:

missing logging framework/concept

use of coding anti-pattern

missing coding standards, incl. development and deployment workflow
disregarding of compiler warnings and static code analysis results

disregarding of TODO- / FIXME- / XXX-comments in the code

17
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WTFEs

WTF = Worse Than Failure

(see

https://en.wikipedia.org/wiki/The Daily WTF)

WTF = Work that Frustrates

W-

'F = code that consists of Workarounds,
ToDos and Fixes

19


https://en.wikipedia.org/wiki/The_Daily_WTF

Security

Why is the "need to know” principle
key?

| want to make sure, that my secrets
stay secret.



Security: Dealing with Sensitive Information

Bad: Good:

Configuration files with sensitive Use vaults for credentials & config mgmt. system
Information in the Repository
spring.datasource.url=jdbc:postgresql:// withCredentials([

mydatabase usernamePassword(credentialsId:
spring.datasource.username=a8097378e 'myApp-blackduck-token-myUser’,

passwordVariable: 'PASSWORD_BLACKDUCK')

I/\/\\ scan --token=${PASSWORD. BLACKDUCK}

Can be misused by anyone with READ What you do not know, you cannot misuse.
access to the repo (code scanners) or to
build artifacts (admins).

spring.datasource.password=secret @ usernameVariable: "'USERNAME_BLACKDUCK',

21



Security: Dealing with Sensitive Information

Bad: Good:

Logging sensitive information Such information belong (if at all) into DEBUG
(on INFO level) level etc.

log.info("jwt TWT token: {} 84!, jwt); log.debug

and do not set the default log-level to DEBUG

Can be misused by anyone with READ What you do not log, nobody can misuse.
access to log files (admins, serviceDesk)
and are stored in log archives.
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Testing

Why Is code quality also important for
unit tests?

| want to make sure, that | test all my
code.



Testing: Easy maintenance....NOT

Bad: Good:
Using non descriptive test case names or Use a very precise (and short) name
just numbering them

[UnitOfWork _StateUnderTest ExpectedBehavior]

@test @test
public void getMasterDataCasel(){ public void

Invoice_WhenQuantityIsMissing_CannotBePro
> cessed(
public void getMasterDataCase2(){

}
i)

Class name is not enough to know the All relevant information available - saves time!
content and intention of the test.
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Testing: | got everything covered....NOT

Bad: Good:
Only testing for the OK or ERROR In addition(!) testing with test data
response code but not for any values

@test @test
public void getMasterDatalLangEN(){ public void getMasterDatalLangEN(){
;sser"rEquals(H’erS’ra’rus.OK.value() AéserTTrue(expecTedLis’r.con‘rains((ac’rualEn’rry
).
>

[fo *
You do not know if the value itself is You are sure that you not only get A result, but the

correct, thus you may miss relation errors. CORRECT one.

25



Maintainability

Do | really want to maintain that code
later on?

| want to make it simple for myself.



Maintainability: Variable names

Bad: Good:
Unreadable variable names Variable names that so precise, that everyone
understands them immediately

export class TireServiceBean {
agts_cmplt_fltng ? : number;
agts_ftng_rn_flt ? : number;
agts_blcng ? : number;
agts_whl_str_grnd ? : number;
agts_agmt_id ? : number;
agts_fcm_id ? : number;

}:

If you have to guess you could be wrong It saves time and eliminates the need for (much)
and it costs time. additional documentation.
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Maintainability: Variable names

Bad: Good:
Unreadable variable names Variable names that so precise, that everyone
understands them immediately

@Column(name = ,aspir_rec_id")
@Column(name = ,aspir_cntry_cd")
@Column(name = ,aspir_dIr_cd")
@Column(name = ,aspir_01")
@Column(name = ,aspir_02")
@Column(name = ,aspir_rec_typ")
@Column(hame = ,aspir_03")

If you have to guess you could be wrong It saves time and eliminates the need for (much)
and it costs time. additional documentation.
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Maintainability: Magic numbers

Bad:
Magic humbers

openCoockieStatement(value:any){ class
this.booleanFlag=value;

if(value::Z)&

{
this.CookieFooter=false;
}

this.cookieStatement=true;

}:

It costs time to check what is behind those
numbers.

Good:

Meaningful names that so precise, that everyone
understands them immediately or a clear inline
documentation about the hidden meaning

It saves time and eliminates the need for (much)
additional documentation.

29



Maintainability: No obvious misleadings

Bad: Good:
When types and names to not match the The variable types should match their values and
content and/or the intended usage the intended usage.

someClass(){ class
string myBoolean;

if(myBoolea ::3)&

{
do something;
}
do somethingElse;
}
It costs time to check what is behind those It saves time and eliminates the chance of

numbers. mentally running into the wrong direction.
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Maintainabllity: Code complexity vs. Code duplication

Higher code
complexity

More code
duplication

Less
code
duplication

Less
code
complexity
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Maintainabllity: Repository sanity

Good:
Delete the old code tree, it will
remain in the repository anyway

Bad:
Duplicated trees checked in after renaming
the top directory

It saves time and eliminates the
chance of changing irrelevant code.

If you have to guess you could be wrong
and it costs time.
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Maintainability: commented out code

Bad: Good:
Commented out complete classes or the core Delete continuously commented out sections,
class code in the active master branch since it will remain in the repository anyway

(cron = "${cron.expression}")
private void scheduledCronTask(){
List<Object[]> custDataResponse = get():
if(ICollectionUtil.isEmpty(custResponse)) {
for (Object[] cust : custDataResponse) {
// doSomething;

}
}
%

It costs time to check what code is really active. No ,mentally deleting code” necessary and more
space in the IDE for the rest of the code.
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Results

the (good) developers
are leaving

effort to maintain
and expand the
code increases

more effort for
onboarding new
developers

higher risk and
costs when fixing
bugs

not fun to work with
&
bad team spirit

project delay

project costs a lot
more in the end

A4

project- and/or
customer loss
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Results

Code that Is hard to maintain is very costly !!!
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Reasons

Source: members of development team
Not enough skills

No plan at the beginning

Fear (“| cannot tell this to my project manager / line manager”)

O OO

Source: project management / line management / customer
Not enough budget

Not enough time, leading to too much time pressure (“haste makes waste”)
No reviews from (experienced) peers

38
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Less artists — more engineers and craftsmen

.8

o
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Recommendations

Planning Process

* No pure refactoring sprints, but * everyone in the development team is
budgeting 5-10% for it right from encouraged to make improvements
the beginning within the project

« Training and peer-reviews « establish a change culture in the team

» - open and straight communication to customer and own management
o communicate issues and fix them in a timely manner, instead of

trying to cover them up
o communicate the advantages of a continuous refactoring

repeatedly
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Costs

Assumptions
Team of 6 developers
Bad code costs each developer 16 min per day

Conclusion
Team looses lday per week for one developer

Use that 1day per week to improve the code

Results
Time/Cost savings & a more motivated development team

16 X 6 =96 min per day
96 X 5 =480 min / 8h per week

In 6 months this project wastes
24 days (3,3%)

g

* o
D e
»
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Refactoring

NEVER BE

TO EXPERIMENT




Sources

Websites and blogs
https://thedailywtf.com/
https://blog.codinghorror.com/

https://muhammad-rahmatullah.medium.com/wtf-per-minute-an-actual-measurement-for-code-
quality-780914bf9d4b

https://blog.devgenius.io/the-best-examples-of-bad-code-ive-come-across-production-mode-
4f13e8d4de?

https://www.quora.com/What-are-some-examples-of-bad-code
https://en.wikipedia.org/wiki/Just another Perl hacker
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https://en.wikipedia.org/wiki/Just_another_Perl_hacker

Supplementory




Reasons: Skill
Boolean usage

Comparing flag against true is redundant when its a boolean
flag to begin with.

?‘;ri(ff“i reSUlE B ')'fix"" Using a separate if-clause to handle the alternate condition is
1 ag == true . ,
{ 7 redundant, when it should’ve been an else clause.
result = "pre" + result;
. return (flag? “prefix” : “postfix”);
) Suggestions F F
1f (flag == false) or if (flag)
{ {
result = "post" + result;

return "prefix";

} }

return result; else

{

return "postfix";

}
And most importantly, when someone uses a code-search tool to find all

instances of “prefix”, they won’t get Zero-Results-Found like in the original
code.
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Reasons: SKkill

Do NOT create software as an 1Q test

@P=split//, " .URRUU\c8R";@d=split//,"\nrekcah xinU / lreP rehtona tsul";sub p{
@p{"rs$p","usp"}=(P,P);pipe"rsp","usp";++3p; ($q*=2)+=$f=!fork;map{$P=$P[$f"ord
($p{$_1})&61;%p{$_}=/ "$P/ix?$P:close$_l}keys%pl}p;p;p;p;p;map{$p{$_}=~/"[P.1/&&
close$ }%p;wait until$?;map{/"r/&&<$ >}%p;$ =$d[$ql;sleep rand(2)if/\S/;print

Forking processes to print out one letter each in the correct order.
(an example in the “Just another perl hacker” (JAPH) challenge)

KISS principle — Do NOT make it more complex that it needs to be

Would you understand it at 2 a.m. in the morning?
Could you explain it to a Junior Developer in a few minutes?
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