The Rocky Horror
Code Show

Why refactoring is
not an option, but a necessity

Thomas Kashofer
Director Expert

2023-07-13

Cal

Agenda

Motivation Technical debt Funny WTFs Results Reasons Recommendation

Thomas Kashofer

ICH BIN UBER
50 JAHRE

ALT BITTE

HELFEN SIE

MIR AUF'S

FAHRRAD

Thomas Kashofer

Director Consulting Expert
Digital Transformation Consultant

thomas.kashofer@cgi.com

+49 151/16358528
linkedin.com/in/fthomas-kashofer-52468625

xing.com/profile/Thomas_Kashofer

22 years of professional experience
10 years of personnel responsibility

Various roles (developer, tester, requirements engineer,
technical architect, solution architect, project manager,

consultant)
Software archaeologist

Open-source enthusiast

"To create an environment in which we enjoy
working together and, as owners, contribute to
building a company we can be proud of.”

Thomas Kashofer
1984 — my 15t Computer

222 BYTES FREE
FEADY .

P S e s o S

(: commodore

Model VC 1020

Thomas Kashofer |
1990 — my 15t Windows — 3.0

'='C|!mk|' =l = Program Manager ol i
Settings File Options Window Help
. . Main [+
; ; =] /= ; e
e 2 B O
._. | File tlanager Control Fanel Print Manager Clipboard 005 Prompt
% = Accessories
Windows Setup =y o)
Y &
Write Faintbruzh Terminal Motepad Recorde
S v [[T
File Disk Tree ¥iew Options _ Game Skill Help
. rdfile Calendar Calculatar
Window Help
Diret
=l = ek g
CWINDOWS
Each
EQSETUP = CWINDI(
Em WINDOWS || =] 8
il [SYSTEM]
EQ[TEMP] +
«| 1 +
Selected 1 file[s] [0 bytes] out of 7&

Thomas Kashofer |
1993 — my 15t Word for Windows — 6.0

Microsoft Word - Documentl
=| File Edit Yiew Insert Format Tools Table Window Help

[l

DE@&I@H’E (w2 Fal= (=

Mormal E ITimes Mew Roman EI |1I] E |]EI IO ==

|1uuzﬂ
1= =|
EE"'E'E""E'

i

Il | &'
E
_a

1

[

|]

I
Tl

¥

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In non ipsum sed justo pellentesque gravida.
Phasellus ut orct vitae ipsutn posuere ulitices eunec odio. Praesent mollis cursus magna et sodales. Mot
et mollis tellus. Praesent witae lobortis metus. Aliguam tempor tellus mibh, Maecenas tristique vehicula
putis, non tetpor atite wiverra at. Fusce quis rubh ndbh, fiec mattis maoris. Cuarabitur gquis purus sed ante
hendrent dapibuis. Bed molestie fringilla faucibus, Pellentesque lectus nune, valputate guis mterdum a
consectetur eget tortor. Duis in interdum urna. Aenean libero velit, mterdum ac scelerisgque sed, fringilla et
tusi. Donec tempor nisl a elit posuere sed aliquam necue lobortis. Aligquam consectetur sagittis mbh
venenatis vatias,

auspendisse tempor avgue vel velit sollicibudin ewismod porta nisl wvolutpat. Duas laoreet acoumsan metus,
ac semper leo congue ut. Proin blandit venenatis laoreet. Buspendizse non libero risus, eget suscipit orei. Inf
gravida ornate aliquet. Donec condmmentum, justo ut placerat venenatis, augue turpis condimentum arcny,
tiec Wlamecorper velit negue sit amet arcn, Phasellus ac ante odio. Curabitur negue lorem, sollicibudin s
hactns goe i i 111115 i ; ;

=11, i A1la1e M 311 Bl eth et 11 7] ik 1 TIE A1 ITHE S 1At Hlkae ol il L 1]]

Thomas Kashofer

1993 — my 18t Linux — self-compiled

total 64

-TW-TW-T--
drwxrwxr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
“TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-I--
-TW-TW-T--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxXrwxr-x
drwxr-xr-x
drwxr-xr-x

[T R PY R T S A T,

phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap

S 11

phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
phoenixnap
N |

-

check root.sh

example bash.sh
example config.sh
example script.sh
example. txt
foo.sh

Thomas Kashofer |
2001 — my 1st Job as Lotus Notes/Domino Developer

D 1985-2001 Lotus Development Corporation. All rights reserved.
This software is subject to the Lotus Software Agreement,
Restricted Rights for U.S. government users, and applicable
export regulations.

Thomas Kashofer
2002 — my 1st Java v1.4

Java 2 on FreeB5D — Mozilla Firefox

File Edit Wiew Go Bookmarks Tools Help

<:1| - |:> - l%] O @ ||_| http:/fwww.eyesbeyond j O Go I@,

Javel

| v

JDK 1.4

Java 2

Status Although parts of the JDE 1.4 2 patchset for BSD are still under

1B development, the base system is quite useable for most tasks. However,
Jbootstrap people wishing to 1un it in a production environment do so at their own
DR sk

IDE13 The source code for the JDE 1 4 15 available from Sun here. You will need
L to obtain the Java 2 SDE 147 download.

JDE15

Once you have done this and agreed to the SCSL you can proceed to
download the latest BSD JDE 142 patchset. This contains patches, build
instructions and other related information.

=]

Agenda

Motivation

11

My motivation

Many of the systems | have reviewed in the last years have quite a few things in common:

poorly designed

frustration

poorly coded

Too much technical debt

wasted lifetime

poorly documented

wasted money

12

Agenda

Technical debt

13

Technical debt — When speed is the only aim

S

Intentional

Occurs when an organization
makes a conscious decision
to optimize for the present
rathen than for the future.

T

Unintentional

Occurs when an organization
makes an avoidable mistake.

14

The 4 Reasons for Technical Debt

Intentional Unintentional
%
= We don’t We do not
(&) .
g | havetime know how
= . We should
2 | We will deal
S I not have
= | with it later

done that

15

Technical debt - Examples

Common technical debts in software development projects:

* no code comments / lots of comments

* meaningless or misleading names (variables, methods, ...)
* long methods

* methods that does many things

* missing or patchy documentation

* missing or patchy tests

* missing CI/CD infrastructure

16

Technical debt - Examples

More technical debts in software development projects:

missing logging framework/concept

use of coding anti-pattern

missing coding standards, incl. development and deployment workflow
disregarding of compiler warnings and static code analysis results

disregarding of TODO- / FIXME- / XXX-comments in the code

17

Agenda

Funny WTFs

18

WTFEs

WTF = Worse Than Failure

(see

https://en.wikipedia.org/wiki/The Daily WTF)

WTF = Work that Frustrates

W-

'F = code that consists of Workarounds,
ToDos and Fixes

19

https://en.wikipedia.org/wiki/The_Daily_WTF

Security

Why is the "need to know” principle
key?

| want to make sure, that my secrets
stay secret.

Security: Dealing with Sensitive Information

Bad: Good:

Configuration files with sensitive Use vaults for credentials & config mgmt. system
Information in the Repository
spring.datasource.url=jdbc:postgresql:// withCredentials([

mydatabase usernamePassword(credentialsId:
spring.datasource.username=a8097378e 'myApp-blackduck-token-myUser’,

passwordVariable: 'PASSWORD_BLACKDUCK')

I/\/\\ scan --token=${PASSWORD. BLACKDUCK}

Can be misused by anyone with READ What you do not know, you cannot misuse.
access to the repo (code scanners) or to
build artifacts (admins).

spring.datasource.password=secret @ usernameVariable: "'USERNAME_BLACKDUCK',

21

Security: Dealing with Sensitive Information

Bad: Good:

Logging sensitive information Such information belong (if at all) into DEBUG
(on INFO level) level etc.

log.info("jwt TWT token: {} 84!, jwt); log.debug

and do not set the default log-level to DEBUG

Can be misused by anyone with READ What you do not log, nobody can misuse.
access to log files (admins, serviceDesk)
and are stored in log archives.

22

Testing

Why Is code quality also important for
unit tests?

| want to make sure, that | test all my
code.

Testing: Easy maintenance....NOT

Bad: Good:
Using non descriptive test case names or Use a very precise (and short) name
just numbering them

[UnitOfWork _StateUnderTest ExpectedBehavior]

@test @test
public void getMasterDataCasel(){ public void

Invoice_WhenQuantityIsMissing_CannotBePro
> cessed(
public void getMasterDataCase2(){

}
i)

Class name is not enough to know the All relevant information available - saves time!
content and intention of the test.

24

Testing: | got everything covered....NOT

Bad: Good:
Only testing for the OK or ERROR In addition(!) testing with test data
response code but not for any values

@test @test
public void getMasterDatalLangEN(){ public void getMasterDatalLangEN(){
;sser"rEquals(H’erS’ra’rus.OK.value() AéserTTrue(expecTedLis’r.con‘rains((ac’rualEn’rry
).
>

[fo *
You do not know if the value itself is You are sure that you not only get A result, but the

correct, thus you may miss relation errors. CORRECT one.

25

Maintainability

Do | really want to maintain that code
later on?

| want to make it simple for myself.

Maintainability: Variable names

Bad: Good:
Unreadable variable names Variable names that so precise, that everyone
understands them immediately

export class TireServiceBean {
agts_cmplt_fltng ? : number;
agts_ftng_rn_flt ? : number;
agts_blcng ? : number;
agts_whl_str_grnd ? : number;
agts_agmt_id ? : number;
agts_fcm_id ? : number;

}:

If you have to guess you could be wrong It saves time and eliminates the need for (much)
and it costs time. additional documentation.

27

Maintainability: Variable names

Bad: Good:
Unreadable variable names Variable names that so precise, that everyone
understands them immediately

@Column(name = ,aspir_rec_id")
@Column(name = ,aspir_cntry_cd")
@Column(name = ,aspir_dIr_cd")
@Column(name = ,aspir_01")
@Column(name = ,aspir_02")
@Column(name = ,aspir_rec_typ")
@Column(hame = ,aspir_03")

If you have to guess you could be wrong It saves time and eliminates the need for (much)
and it costs time. additional documentation.

28

Maintainability: Magic numbers

Bad:
Magic humbers

openCoockieStatement(value:any){ class
this.booleanFlag=value;

if(value::Z)&

{
this.CookieFooter=false;
}

this.cookieStatement=true;

}:

It costs time to check what is behind those
numbers.

Good:

Meaningful names that so precise, that everyone
understands them immediately or a clear inline
documentation about the hidden meaning

It saves time and eliminates the need for (much)
additional documentation.

29

Maintainability: No obvious misleadings

Bad: Good:
When types and names to not match the The variable types should match their values and
content and/or the intended usage the intended usage.

someClass(){ class
string myBoolean;

if(myBoolea ::3)&

{
do something;
}
do somethingElse;
}
It costs time to check what is behind those It saves time and eliminates the chance of

numbers. mentally running into the wrong direction.

30

Maintainabllity: Code complexity vs. Code duplication

Higher code
complexity

More code
duplication

Less
code
duplication

Less
code
complexity

31

Maintainabllity: Repository sanity

Good:
Delete the old code tree, it will
remain in the repository anyway

Bad:
Duplicated trees checked in after renaming
the top directory

It saves time and eliminates the
chance of changing irrelevant code.

If you have to guess you could be wrong
and it costs time.

32

Maintainability: commented out code

Bad: Good:
Commented out complete classes or the core Delete continuously commented out sections,
class code in the active master branch since it will remain in the repository anyway

(cron = "${cron.expression}")
private void scheduledCronTask(){
List<Object[]> custDataResponse = get():
if(ICollectionUtil.isEmpty(custResponse)) {
for (Object[] cust : custDataResponse) {
// doSomething;

}
}
%

It costs time to check what code is really active. No ,mentally deleting code” necessary and more
space in the IDE for the rest of the code.

33

Agenda

Results

34

Results

the (good) developers
are leaving

effort to maintain
and expand the
code increases

more effort for
onboarding new
developers

higher risk and
costs when fixing
bugs

not fun to work with
&
bad team spirit

project delay

project costs a lot
more in the end

A4

project- and/or
customer loss

35

Results

Code that Is hard to maintain is very costly !!!

Agenda

Reasons

37

Reasons

Source: members of development team
Not enough skills

No plan at the beginning

Fear (“| cannot tell this to my project manager / line manager”)

O OO

Source: project management / line management / customer
Not enough budget

Not enough time, leading to too much time pressure (“haste makes waste”)
No reviews from (experienced) peers

38

Agenda

Recommendation

39

Less artists — more engineers and craftsmen

.8

o

40

Recommendations

Planning Process

* No pure refactoring sprints, but * everyone in the development team is
budgeting 5-10% for it right from encouraged to make improvements
the beginning within the project

« Training and peer-reviews « establish a change culture in the team

» - open and straight communication to customer and own management
o communicate issues and fix them in a timely manner, instead of

trying to cover them up
o communicate the advantages of a continuous refactoring

repeatedly

41

Costs

Assumptions
Team of 6 developers
Bad code costs each developer 16 min per day

Conclusion
Team looses lday per week for one developer

Use that 1day per week to improve the code

Results
Time/Cost savings & a more motivated development team

16 X 6 =96 min per day
96 X 5 =480 min / 8h per week

In 6 months this project wastes
24 days (3,3%)

g

* o
D e
»

42

Refactoring

NEVER BE

TO EXPERIMENT

Sources

Websites and blogs
https://thedailywtf.com/
https://blog.codinghorror.com/

https://muhammad-rahmatullah.medium.com/wtf-per-minute-an-actual-measurement-for-code-
quality-780914bf9d4b

https://blog.devgenius.io/the-best-examples-of-bad-code-ive-come-across-production-mode-
4f13e8d4de?

https://www.quora.com/What-are-some-examples-of-bad-code
https://en.wikipedia.org/wiki/Just another Perl hacker

44

https://thedailywtf.com/
https://blog.codinghorror.com/
https://muhammad-rahmatullah.medium.com/wtf-per-minute-an-actual-measurement-for-code-quality-780914bf9d4b
https://muhammad-rahmatullah.medium.com/wtf-per-minute-an-actual-measurement-for-code-quality-780914bf9d4b
https://blog.devgenius.io/the-best-examples-of-bad-code-ive-come-across-production-mode-4f13e8d4de2
https://blog.devgenius.io/the-best-examples-of-bad-code-ive-come-across-production-mode-4f13e8d4de2
https://www.quora.com/What-are-some-examples-of-bad-code
https://en.wikipedia.org/wiki/Just_another_Perl_hacker

Supplementory

Reasons: Skill
Boolean usage

Comparing flag against true is redundant when its a boolean
flag to begin with.

?‘;ri(ff“i reSUlE B ')'fix"" Using a separate if-clause to handle the alternate condition is
1 ag == true . ,
{ 7 redundant, when it should’ve been an else clause.
result = "pre" + result;
. return (flag? “prefix” : “postfix”);
) Suggestions F F
1f (flag == false) or if (flag)
{ {
result = "post" + result;

return "prefix";

} }

return result; else

{

return "postfix";

}
And most importantly, when someone uses a code-search tool to find all

instances of “prefix”, they won’t get Zero-Results-Found like in the original
code.

46

Reasons: SKkill

Do NOT create software as an 1Q test

@P=split//, " .URRUU\c8R";@d=split//,"\nrekcah xinU / lreP rehtona tsul";sub p{
@p{"rs$p","usp"}=(P,P);pipe"rsp","usp";++3p; ($q*=2)+=$f=!fork;map{$P=$P[$f"ord
($p{$_1})&61;%p{$_}=/ "$P/ix?$P:close$_l}keys%pl}p;p;p;p;p;map{$p{$_}=~/"[P.1/&&
close$ }%p;wait until$?;map{/"r/&&<$ >}%p;$ =$d[$ql;sleep rand(2)if/\S/;print

Forking processes to print out one letter each in the correct order.
(an example in the “Just another perl hacker” (JAPH) challenge)

KISS principle — Do NOT make it more complex that it needs to be

Would you understand it at 2 a.m. in the morning?
Could you explain it to a Junior Developer in a few minutes?

	Slide 1: The Rocky Horror Code Show Why refactoring is not an option, but a necessity
	Slide 2: Agenda
	Slide 3: Thomas Kashofer
	Slide 4: Thomas Kashofer
	Slide 5: Thomas Kashofer
	Slide 6: Thomas Kashofer
	Slide 7: Thomas Kashofer
	Slide 8: Thomas Kashofer
	Slide 9: Thomas Kashofer
	Slide 10: Thomas Kashofer
	Slide 11: Agenda
	Slide 12: My motivation
	Slide 13: Agenda
	Slide 14: Technical debt – When speed is the only aim
	Slide 15: The 4 Reasons for Technical Debt
	Slide 16: Technical debt - Examples
	Slide 17: Technical debt - Examples
	Slide 18: Agenda
	Slide 19: WTFs
	Slide 20: Security
	Slide 21: Security: Dealing with Sensitive Information
	Slide 22: Security: Dealing with Sensitive Information
	Slide 23: Testing
	Slide 24: Testing: Easy maintenance….NOT
	Slide 25: Testing: I got everything covered….NOT
	Slide 26: Maintainability
	Slide 27: Maintainability: Variable names
	Slide 28: Maintainability: Variable names
	Slide 29: Maintainability: Magic numbers
	Slide 30: Maintainability: No obvious misleadings
	Slide 31: Maintainability: Code complexity vs. Code duplication
	Slide 32: Maintainability: Repository sanity
	Slide 33: Maintainability: commented out code
	Slide 34: Agenda
	Slide 35: Results
	Slide 36: Results
	Slide 37: Agenda
	Slide 38: Reasons
	Slide 39: Agenda
	Slide 40: Less artists – more engineers and craftsmen
	Slide 41: Recommendations
	Slide 42: Costs
	Slide 43: Refactoring
	Slide 44: Sources
	Slide 45: Supplementory
	Slide 46: Reasons: Skill
	Slide 47: Reasons: Skill

