
The Rocky Horror

Code Show

Why refactoring is

not an option, but a necessity

Thomas Kashofer

Director Expert

2023-07-13

Motivation Technical debt Funny WTFs Results Reasons Recommendation

Agenda

2

01 02 03 04 05 06

3

Thomas Kashofer

• 22 years of professional experience

• 10 years of personnel responsibility

• Various roles (developer, tester, requirements engineer,

technical architect, solution architect, project manager,

consultant)

• Software archaeologist

• Open-source enthusiast

4

Thomas Kashofer

“To create an environment in which we enjoy
working together and, as owners, contribute to

building a company we can be proud of.”

Director Consulting Expert

Digital Transformation Consultant

thomas.kashofer@cgi.com

+49 151/16358528

linkedin.com/in/thomas-kashofer-52468625

xing.com/profile/Thomas_Kashofer

5

Thomas Kashofer
1984 – my 1st Computer

Source: https://zock.com

6

Thomas Kashofer
1990 – my 1st Windows – 3.0

Source: https://en.wikipedia.org/wiki/Windows_3.0#/media/File:Windows_3.0_workspace.png

7

Thomas Kashofer
1993 – my 1st Word for Windows – 6.0

Source: https://www.techjunkie.com/retro-friday-microsoft-word-6-0/

8

Thomas Kashofer
1993 – my 1st Linux – self-compiled

Source: https://phoenixnap.com/kb/linux-source-command

9

Thomas Kashofer
2001 – my 1st Job as Lotus Notes/Domino Developer

Source: https://notesapplicationmigration.com/lotus-com-notes-domino-wikis-and-forums/

10

Thomas Kashofer
2002 – my 1st Java v1.4

Source: https://www.ocf.berkeley.edu/~reinholz/freebsd/jdk14.html

Motivation Technical debt Funny WTFs Results Reasons Recommendation

Agenda

11

01 02 03 04 05 06

My motivation

Many of the systems I have reviewed in the last years have quite a few things in common:

12

poorly documented

poorly coded

poorly designed

Too much technical debt wasted lifetime

frustration

wasted money

Motivation Technical debt Funny WTFs Results Reasons Recommendation

Agenda

13

01 02 03 04 05 06

14

Technical debt – When speed is the only aim

UnintentionalIntentional

Occurs when an organization

makes a conscious decision

to optimize for the present

rathen than for the future.

Occurs when an organization

makes an avoidable mistake.

The 4 Reasons for Technical Debt

15

We don’t

have time

We do not

know how

We should

not have

done that

We will deal

with it later

Intentional Unintentional

P
ru

d
e
n

t
R

e
c
k
le

s
s

Technical debt - Examples

Common technical debts in software development projects:

• no code comments / lots of comments

• meaningless or misleading names (variables, methods, …)

• long methods

• methods that does many things

• missing or patchy documentation

• missing or patchy tests

• missing CI/CD infrastructure

16

Technical debt - Examples

More technical debts in software development projects:

• missing logging framework/concept

• use of coding anti-pattern

• missing coding standards, incl. development and deployment workflow

• disregarding of compiler warnings and static code analysis results

• disregarding of TODO- / FIXME- / XXX-comments in the code

17

Motivation Technical debt Funny WTFs Results Reasons Recommendation

Agenda

18

01 02 03 04 05 06

WTFs

WTF = Worse Than Failure
(see https://en.wikipedia.org/wiki/The_Daily_WTF)

WTF = Work that Frustrates

WTF = code that consists of Workarounds,

ToDos and Fixes

19

https://en.wikipedia.org/wiki/The_Daily_WTF

Security

20

Why is the “need to know” principle

key?

I want to make sure, that my secrets

stay secret.

Bad:

Configuration files with sensitive

Information in the Repository

spring.datasource.url=jdbc:postgresql://
mydatabase
spring.datasource.username=a8097378e
spring.datasource.password=secret

Can be misused by anyone with READ

access to the repo (code scanners) or to

build artifacts (admins).

Good:

Use vaults for credentials & config mgmt. system

withCredentials([
 usernamePassword(credentialsId:
‘myApp-blackduck-token-myUser',
usernameVariable: 'USERNAME_BLACKDUCK',
passwordVariable: 'PASSWORD_BLACKDUCK’)
….
scan --token=${PASSWORD_BLACKDUCK}

What you do not know, you cannot misuse.

Security: Dealing with Sensitive Information

21

Bad:

Logging sensitive information

(on INFO level)

log.info("jwt JWT token: {} 84!, jwt);

Can be misused by anyone with READ

access to log files (admins, serviceDesk)

and are stored in log archives.

Good:

Such information belong (if at all) into DEBUG

level etc.

log.debug

and do not set the default log-level to DEBUG

What you do not log, nobody can misuse.

Security: Dealing with Sensitive Information

22

Testing

23

Why is code quality also important for

unit tests?

I want to make sure, that I test all my

code.

Bad:

Using non descriptive test case names or

just numbering them

@test
public void getMasterDataCase1(){
…
};
public void getMasterDataCase2(){
…
};

Class name is not enough to know the

content and intention of the test.

Good:

Use a very precise (and short) name

[UnitOfWork_StateUnderTest_ExpectedBehavior]

@test
public void
Invoice_WhenQuantityIsMissing_CannotBePro
cessed{
…
};

All relevant information available - saves time!

Testing: Easy maintenance….NOT

24

Bad:

Only testing for the OK or ERROR

response code but not for any values

@test
public void getMasterDataLangEN(){
…
assertEquals(HttpStatus.OK.value())
…
};

You do not know if the value itself is

correct, thus you may miss relation errors.

Good:

In addition(!) testing with test data

@test
public void getMasterDataLangEN(){
…
assertTrue(expectedList.contains((actualEntry
)));
…
};

You are sure that you not only get A result, but the

CORRECT one.

Testing: I got everything covered….NOT

25

Maintainability

26

Do I really want to maintain that code

later on?

I want to make it simple for myself.

Bad:

Unreadable variable names

export class TireServiceBean {
agts_cmplt_fltng ? : number;
agts_ftng_rn_flt ? : number;
agts_blcng ? : number;
agts_whl_str_grnd ? : number;
agts_agmt_id ? : number;
agts_fcm_id ? : number;

};

If you have to guess you could be wrong

and it costs time.

Good:

Variable names that so precise, that everyone

understands them immediately

It saves time and eliminates the need for (much)

additional documentation.

Maintainability: Variable names

27

Bad:

Unreadable variable names

@Column(name = „aspir_rec_id“)
@Column(name = „aspir_cntry_cd“)
@Column(name = „aspir_dlr_cd“)
@Column(name = „aspir_01“)
@Column(name = „aspir_02“)
@Column(name = „aspir_rec_typ“)
@Column(name = „aspir_03“)

If you have to guess you could be wrong

and it costs time.

Good:

Variable names that so precise, that everyone

understands them immediately

It saves time and eliminates the need for (much)

additional documentation.

Maintainability: Variable names

28

Bad:

Magic numbers

openCoockieStatement(value:any){ class
this.booleanFlag=value;
if(value==2)
{

this.CookieFooter=false;
}
this.cookieStatement=true;

};

It costs time to check what is behind those

numbers.

Good:

Meaningful names that so precise, that everyone

understands them immediately or a clear inline

documentation about the hidden meaning

It saves time and eliminates the need for (much)

additional documentation.

Maintainability: Magic numbers

29

Bad:

When types and names to not match the

content and/or the intended usage

someClass(){ class
string myBoolean;
if(myBoolean==3)
{

do something;
}
do somethingElse;

};

It costs time to check what is behind those

numbers.

Good:

The variable types should match their values and

the intended usage.

It saves time and eliminates the chance of

mentally running into the wrong direction.

Maintainability: No obvious misleadings

30

Maintainability: Code complexity vs. Code duplication

31

Less

code

duplication

Higher code
complexity

Less

code

complexity

More code
duplication

Bad:

Duplicated trees checked in after renaming

the top directory

If you have to guess you could be wrong

and it costs time.

Good:

Delete the old code tree, it will

remain in the repository anyway

It saves time and eliminates the

chance of changing irrelevant code.

Maintainability: Repository sanity

32

Bad:

Commented out complete classes or the core

class code in the active master branch

@Scheduled(cron = “${cron.expression}“)
private void scheduledCronTask(){

List<Object[]> custDataResponse = get();
if(!CollectionUtil.isEmpty(custResponse)) {

for (Object[] cust : custDataResponse) {
// doSomething;

}
}

};

It costs time to check what code is really active.

Good:

Delete continuously commented out sections,

since it will remain in the repository anyway

No „mentally deleting code“ necessary and more

space in the IDE for the rest of the code.

Maintainability: commented out code

33

Motivation Technical debt Funny WTFs Results Reasons Recommendation

Agenda

34

01 02 03 04 05 06

Results

35

higher risk and

costs when fixing

bugs

more effort for

onboarding new

developers

effort to maintain

and expand the

code increases

not fun to work with

&

bad team spirit

project costs a lot
more in the end

the (good) developers
are leaving

project- and/or
customer loss

project delay

Results

Code that is hard to maintain is very costly !!!

36

Motivation Technical debt Funny WTFs Results Reasons Recommendation

Agenda

37

01 02 03 04 05 06

Reasons

Source: members of development team

Not enough skills

No plan at the beginning

Fear (“I cannot tell this to my project manager / line manager”)

38

Source: project management / line management / customer

Not enough budget

Not enough time, leading to too much time pressure (“haste makes waste”)

No reviews from (experienced) peers

Motivation Technical debt Funny WTFs Results Reasons Recommendation

Agenda

39

01 02 03 04 05 06

Less artists – more engineers and craftsmen

40

• everyone in the development team is

encouraged to make improvements

within the project

• establish a change culture in the team

ProcessPlanning

Communication

41

Recommendations

• No pure refactoring sprints, but

budgeting 5-10% for it right from

the beginning

• Training and peer-reviews

• - open and straight communication to customer and own management

o communicate issues and fix them in a timely manner, instead of

trying to cover them up

o communicate the advantages of a continuous refactoring

repeatedly

Costs

Assumptions

Team of 6 developers

Bad code costs each developer 16 min per day

Conclusion

Team looses 1day per week for one developer

Suggestion

Use that 1day per week to improve the code

Results

Time/Cost savings & a more motivated development team

42

16 x 6 = 96 min per day

96 x 5 = 480 min / 8h per week

In 6 months this project wastes

24 days (3,3%)

“Just do it”

43

Refactoring

TO EXPERIMENT

NEVER BE

AFRAID

Sources

Websites and blogs

https://thedailywtf.com/

https://blog.codinghorror.com/

https://muhammad-rahmatullah.medium.com/wtf-per-minute-an-actual-measurement-for-code-

quality-780914bf9d4b

https://blog.devgenius.io/the-best-examples-of-bad-code-ive-come-across-production-mode-

4f13e8d4de2

https://www.quora.com/What-are-some-examples-of-bad-code

https://en.wikipedia.org/wiki/Just_another_Perl_hacker

44

https://thedailywtf.com/
https://blog.codinghorror.com/
https://muhammad-rahmatullah.medium.com/wtf-per-minute-an-actual-measurement-for-code-quality-780914bf9d4b
https://muhammad-rahmatullah.medium.com/wtf-per-minute-an-actual-measurement-for-code-quality-780914bf9d4b
https://blog.devgenius.io/the-best-examples-of-bad-code-ive-come-across-production-mode-4f13e8d4de2
https://blog.devgenius.io/the-best-examples-of-bad-code-ive-come-across-production-mode-4f13e8d4de2
https://www.quora.com/What-are-some-examples-of-bad-code
https://en.wikipedia.org/wiki/Just_another_Perl_hacker

45

Supplementory

Skill

Reasons: Skill

46

string result = "fix";

if (flag == true)

{

result = "pre" + result;

}

if (flag == false)

{

result = "post" + result;

}

return result;

Comparing flag against true is redundant when its a boolean

flag to begin with.

Using a separate if-clause to handle the alternate condition is

redundant, when it should’ve been an else clause.

return (flag? “prefix” : “postfix”);

if (flag)

{

return "prefix";

}

else

{

return "postfix";

}

or

And most importantly, when someone uses a code-search tool to find all

instances of “prefix”, they won’t get Zero-Results-Found like in the original

code.

Boolean usage

Suggestions

Reasons: Skill

47

Do NOT create software as an IQ test

KISS principle – Do NOT make it more complex that it needs to be

Forking processes to print out one letter each in the correct order.

(an example in the “Just another perl hacker” (JAPH) challenge)

Would you understand it at 2 a.m. in the morning?

Could you explain it to a Junior Developer in a few minutes?

	Slide 1: The Rocky Horror Code Show Why refactoring is not an option, but a necessity
	Slide 2: Agenda
	Slide 3: Thomas Kashofer
	Slide 4: Thomas Kashofer
	Slide 5: Thomas Kashofer
	Slide 6: Thomas Kashofer
	Slide 7: Thomas Kashofer
	Slide 8: Thomas Kashofer
	Slide 9: Thomas Kashofer
	Slide 10: Thomas Kashofer
	Slide 11: Agenda
	Slide 12: My motivation
	Slide 13: Agenda
	Slide 14: Technical debt – When speed is the only aim
	Slide 15: The 4 Reasons for Technical Debt
	Slide 16: Technical debt - Examples
	Slide 17: Technical debt - Examples
	Slide 18: Agenda
	Slide 19: WTFs
	Slide 20: Security
	Slide 21: Security: Dealing with Sensitive Information
	Slide 22: Security: Dealing with Sensitive Information
	Slide 23: Testing
	Slide 24: Testing: Easy maintenance….NOT
	Slide 25: Testing: I got everything covered….NOT
	Slide 26: Maintainability
	Slide 27: Maintainability: Variable names
	Slide 28: Maintainability: Variable names
	Slide 29: Maintainability: Magic numbers
	Slide 30: Maintainability: No obvious misleadings
	Slide 31: Maintainability: Code complexity vs. Code duplication
	Slide 32: Maintainability: Repository sanity
	Slide 33: Maintainability: commented out code
	Slide 34: Agenda
	Slide 35: Results
	Slide 36: Results
	Slide 37: Agenda
	Slide 38: Reasons
	Slide 39: Agenda
	Slide 40: Less artists – more engineers and craftsmen
	Slide 41: Recommendations
	Slide 42: Costs
	Slide 43: Refactoring
	Slide 44: Sources
	Slide 45: Supplementory
	Slide 46: Reasons: Skill
	Slide 47: Reasons: Skill

